Homology Vanishing Theorems for Pinched Submanifolds

被引:1
作者
Onti, Christos-Raent [1 ]
Vlachos, Theodoros [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
Bochner operator; Betti numbers; Homology groups; Pinching; Mean curvature; Length of the second fundamental form; PARALLEL MEAN-CURVATURE; MINIMAL SUBMANIFOLDS; RICCI CURVATURE; SPHERE THEOREM; RIGIDITY THEOREMS; SPACE-FORMS; HYPERSURFACES; IMMERSIONS;
D O I
10.1007/s12220-022-01032-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the geometry and topology of submanifolds under a sharp pinching condition involving extrinsic invariants like the mean curvature and the length of the second fundamental form. Homology vanishing results are given that strengthen and sharpen previous ones. In addition, an integral bound is provided for the Bochner operator of compact Euclidean submanifolds in terms of the Betti numbers.
引用
收藏
页数:33
相关论文
共 44 条
  • [1] HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES
    ALENCAR, H
    DOCARMO, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) : 1223 - 1229
  • [2] Aubin T., 1970, J. Differential Geom., V4, P383
  • [3] Vanishing theorems for the cohomology groups of free boundary submanifolds
    Cavalcante, Marcos P.
    Mendes, Abraao
    Vitorio, Feliciano
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (01) : 137 - 146
  • [4] Cheeger J., 1975, Comparison theorems in Riemannian geometry, V9
  • [5] Complete submanifolds in Euclidean spaces with parallel mean curvature vector
    Cheng, QM
    Nonaka, K
    [J]. MANUSCRIPTA MATHEMATICA, 2001, 105 (03) : 353 - 366
  • [6] Chern S. S., 1970, FUNCTIONAL ANAL RELA, P59, DOI 10.1007/978-3-642-48272-4_2
  • [7] Colbois B, 2012, INDIANA U MATH J, V61, P337
  • [8] Optimal lower eigenvalue estimates for Hodge-Laplacian and applications
    Cui, Qing
    Sun, Linlin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 8320 - 8343
  • [9] Dajczer M., 2019, SUBMANIFOLD THEORY I, DOI DOI 10.1007/978-1-4939-9644-5
  • [10] A class of minimal submanifolds in spheres
    Dajczer, Marcos
    Vlachos, Theodoros
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (03) : 1197 - 1212