Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition

被引:45
|
作者
Nuntawong, N [1 ]
Xin, YC [1 ]
Birudavolu, S [1 ]
Wong, PS [1 ]
Huang, S [1 ]
Hains, CP [1 ]
Huffaker, DL [1 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
关键词
D O I
10.1063/1.1926413
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate an InAs/ GaAs quantum dot (QD) laser based on a strain-compensated, three- stack active region. Each layer of the stacked QD active region contains a thin GaP (Delta a(o)=- 3.8%) tensile layer embedded in a GaAs matrix to partially compensate the compressive strain of the InAs (Delta a(o)= 7%) QD layer. The optimized GaP thickness is similar to 4 MLs and results in a 36% reduction of compressive strain in our device structure. Atomic force microscope images, room-temperature photoluminescence, and x-ray diffraction confirm that strain compensation improves both structural and optical device properties. Room-temperature ground state lasing at lambda = 1.249 mu m, J(th) = 550 A/cm(2) has been demonstrated. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [21] InAs quantum dots grown on InGaAs buffer layers by metal-organic chemical vapor deposition
    Sears, K
    Wong-Leung, J
    Tan, HH
    Jagadish, C
    JOURNAL OF CRYSTAL GROWTH, 2005, 281 (2-4) : 290 - 296
  • [22] Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition
    Megalini, Ludovico
    Brunelli, Simone Tommaso Suran
    Charles, William O.
    Taylor, Aidan
    Isaac, Brandon
    Bowers, John E.
    Klamkin, Jonathan
    MATERIALS, 2018, 11 (03):
  • [23] InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition
    罗帅
    季海铭
    高凤
    杨晓光
    梁平
    赵玲娟
    杨涛
    Chinese Physics Letters, 2013, 30 (06) : 217 - 219
  • [24] InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition
    Luo Shuai
    Ji Hai-Ming
    Gao Feng
    Yang Xiao-Guang
    Liang Ping
    Zhao Ling-Juan
    Yang Tao
    CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [25] InAs/Sb:GaAs quantum dot solar cells grown by metal organic chemical vapor deposition
    Guimard, Denis
    Bordel, Damien
    Morihara, Ryo
    Wakayama, Yuki
    Tanabe, Katsuaki
    Nishioka, Masao
    Arakawa, Yasuhiko
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 2142 - 2146
  • [26] 1.16 μm InAs/GaAs Quantum Dot Laser grown by Metal Organic Chemical Vapor Deposition
    Liu, Hao
    Wang, Qi
    Li, Zhiming
    Chen, Jia
    Liu, Kai
    Ren, Xiaomin
    ACTA PHYSICA POLONICA A, 2018, 134 (02) : 508 - 511
  • [27] 1.3 mu m strain-compensated InAsP/InGaP electroabsorption modulator structure grown by atmospheric pressure metal-organic vapor epitaxy
    Ougazzaden, A
    Devaux, F
    Rao, EVK
    Silvestre, L
    Patriarche, G
    APPLIED PHYSICS LETTERS, 1997, 70 (01) : 96 - 98
  • [28] Schottky characteristics of InAlAs grown by metal-organic chemical vapor deposition
    Ohshima, T
    Moriguchi, H
    Shigemasa, R
    Goto, S
    Tsunotani, M
    Kimura, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1999, 38 (2B): : 1161 - 1163
  • [29] ZnO thin film grown by metal-organic chemical vapor deposition
    Du, GT
    Wang, XQ
    Yang, SR
    Yang, XT
    Wang, JZ
    Zhang, YT
    Liu, D
    Ma, Y
    Liu, DL
    Ong, HC
    FRONTIERS OF SOLID STATE CHEMISTRY, 2002, : 383 - 389
  • [30] ZnMgO nanorod arrays grown by metal-organic chemical vapor deposition
    Wang, J. R.
    Ye, Z. Z.
    Huang, J. Y.
    Ma, Q. B.
    Gu, X. Q.
    He, H. P.
    Zhu, L. P.
    Lu, J. G.
    MATERIALS LETTERS, 2008, 62 (8-9) : 1263 - 1266