Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition

被引:45
作者
Nuntawong, N [1 ]
Xin, YC [1 ]
Birudavolu, S [1 ]
Wong, PS [1 ]
Huang, S [1 ]
Hains, CP [1 ]
Huffaker, DL [1 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
关键词
D O I
10.1063/1.1926413
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate an InAs/ GaAs quantum dot (QD) laser based on a strain-compensated, three- stack active region. Each layer of the stacked QD active region contains a thin GaP (Delta a(o)=- 3.8%) tensile layer embedded in a GaAs matrix to partially compensate the compressive strain of the InAs (Delta a(o)= 7%) QD layer. The optimized GaP thickness is similar to 4 MLs and results in a 36% reduction of compressive strain in our device structure. Atomic force microscope images, room-temperature photoluminescence, and x-ray diffraction confirm that strain compensation improves both structural and optical device properties. Room-temperature ground state lasing at lambda = 1.249 mu m, J(th) = 550 A/cm(2) has been demonstrated. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 18 条
[1]   Formation trends in quantum dot growth using metalorganic chemical vapor deposition [J].
El-Emawy, AA ;
Birudavolu, S ;
Wong, PS ;
Jiang, YB ;
Xu, H ;
Huang, S ;
Huffaker, DL .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (06) :3529-3534
[2]   Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers [J].
Huang, XD ;
Stintz, A ;
Li, H ;
Lester, LF ;
Cheng, J ;
Malloy, KJ .
APPLIED PHYSICS LETTERS, 2001, 78 (19) :2825-2827
[3]  
KAIANDER IN, 2004, APPL PHYS LETT, V94, P1024
[4]   High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers [J].
Kim, SM ;
Wang, Y ;
Keever, M ;
Harris, JS .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (02) :377-379
[5]   1.3 μm luminescence and gain from defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition [J].
Ledentsov, NN ;
Maximov, MV ;
Bimberg, D ;
Maka, T ;
Torres, CMS ;
Kochnev, IV ;
Krestnikov, IL ;
Lantratov, VM ;
Cherkashin, NA ;
Musikhin, YM ;
Alferov, ZI .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (06) :604-607
[6]   InGaAs quantum dots grown with GaP strain compensation layers [J].
Lever, P ;
Tan, HH ;
Jagadish, C .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5710-5714
[7]   Photoluminescence energy and interface chemistry of GaInP/GaAs quantum wells [J].
Mesrine, M ;
Massies, J ;
Vanelle, E ;
Grandjean, N ;
Deparis, C .
APPLIED PHYSICS LETTERS, 1997, 71 (24) :3552-3554
[8]   STRAIN-COMPENSATED STRAINED-LAYER SUPERLATTICES FOR 1.5-MU-M WAVELENGTH LASERS [J].
MILLER, BI ;
KOREN, U ;
YOUNG, MG ;
CHIEN, MD .
APPLIED PHYSICS LETTERS, 1991, 58 (18) :1952-1954
[9]   Effect of strain-compensation in stacked 1.3 μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition [J].
Nuntawong, N ;
Birudavolu, S ;
Hains, CP ;
Huang, S ;
Xu, H ;
Huffaker, DL .
APPLIED PHYSICS LETTERS, 2004, 85 (15) :3050-3052
[10]   CALCULATION OF CRITICAL LAYER THICKNESS VERSUS LATTICE MISMATCH FOR GEXSI1-X/SI STRAINED-LAYER HETEROSTRUCTURES [J].
PEOPLE, R ;
BEAN, JC .
APPLIED PHYSICS LETTERS, 1985, 47 (03) :322-324