Group theory of non-abelian vortices

被引:15
作者
Eto, Minoru [1 ]
Fujimori, Toshiaki [2 ,3 ,4 ]
Gudnason, Sven Bjarke [3 ,4 ]
Jiang, Yunguo [3 ,4 ]
Konishi, Kenichi [3 ,4 ]
Nitta, Muneto [5 ,6 ]
Ohashi, Keisuke [7 ]
机构
[1] RIKEN, Nishina Ctr, Phys Math Lab, Saitama 3510198, Japan
[2] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan
[3] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[4] Univ Pisa, Dept Phys, I-56127 Pisa, Italy
[5] Keio Univ, Dept Phys, Kanagawa 2238521, Japan
[6] Keio Univ, Res & Educ Ctr Nat Sci, Kanagawa 2238521, Japan
[7] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2010年 / 11期
关键词
Duality in Gauge Field Theories; Solitons Monopoles and Instantons; Confinement; Nonperturbative Effects; SUPERSYMMETRIC GAUGE-THEORIES; NON-LINEAR REALIZATION; SIGMA-MODELS; NONLINEAR REALIZATION; KAHLER; MONOPOLES; DUALITY; MODULI; CONFINEMENT; SYMMETRY;
D O I
10.1007/JHEP11(2010)042
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the structure of the moduli space of multiple BPS non-Abelian vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our attention on the action of the exact global (color-flavor diagonal) SU(N) symmetry on it. The moduli space of a single non-Abelian vortex, CPN-1, is spanned by a vector in the fundamental representation of the global SU(N) symmetry. The moduli space of winding-number k vortices is instead spanned by vectors in the direct-product representation: they decompose into the sum of irreducible representations each of which is associated with a Young tableau made of k boxes, in a way somewhat similar to the standard group composition rule of SU(N) multiplets. The Kahler potential is exactly determined in each moduli subspace, corresponding to an irreducible SU(N) orbit of the highest-weight configuration.
引用
收藏
页数:38
相关论文
共 45 条
  • [1] Composite non-Abelian flux tubes in N=2 SQCD
    Auzzi, R.
    Shifman, M.
    Yung, A.
    [J]. PHYSICAL REVIEW D, 2006, 73 (10):
  • [2] Nonabelian superconductors:: vortices and confinement in N=2 SQCD
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Yung, A
    [J]. NUCLEAR PHYSICS B, 2003, 673 (1-2) : 187 - 216
  • [3] Higher winding strings and confined monopoles in N=2 supersymmetric QCD
    Auzzi, R.
    Bolognesi, S.
    Shifman, M.
    [J]. PHYSICAL REVIEW D, 2010, 81 (08):
  • [4] BANDO M, 1984, PROG THEOR PHYS, V72, P1207, DOI 10.1143/PTP.72.1207
  • [5] STRUCTURE OF NON-LINEAR REALIZATION IN SUPERSYMMETRIC THEORIES
    BANDO, M
    KURAMOTO, T
    MASKAWA, T
    UEHARA, S
    [J]. PHYSICS LETTERS B, 1984, 138 (1-3) : 94 - 98
  • [6] NON-LINEAR REALIZATION IN SUPERSYMMETRIC THEORIES
    BANDO, M
    KURAMOTO, T
    MASKAWA, T
    UEHARA, S
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (02): : 313 - 349
  • [7] BAPTISTA JM, ARXIV10031296
  • [8] HOMOGENEOUS KAHLER-MANIFOLDS - PAVING THE WAY TOWARDS NEW SUPERSYMMETRIC SIGMA-MODELS
    BORDEMANN, M
    FORGER, M
    ROMER, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 102 (04) : 605 - 647
  • [9] KAHLER POTENTIALS FOR SUPERSYMMETRIC SIGMA-MODELS WITH BROKEN CENTRAL CHARGES
    BUCHMULLER, W
    ELLWANGER, U
    [J]. PHYSICS LETTERS B, 1986, 166 (03) : 325 - 328
  • [10] Non-Abelian vortices with product moduli
    Dorigoni, Daniele
    Konishi, Kenichi
    Ohashi, Keisuke
    [J]. PHYSICAL REVIEW D, 2009, 79 (04):