Infinite Horizon Optimal Control Problems in the Light of Convex Analysis in Hilbert Spaces

被引:15
作者
Pickenhain, Sabine [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Cottbus, Germany
关键词
Infinite horizon; Optimal control; Pontryagin's Maximum Principle; Existence theorem; Weighted sobolev spaces; Linear-quadratic regulator;
D O I
10.1007/s11228-014-0304-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a class of linear-quadratic infinite horizon optimal control problems is considered. Problems of this type are not only of practical interest. They also appear as an approximation of nonlinear problems. The key idea is to introduce weighted Sobolev spaces as state space and weighted Lebesgue spaces as control spaces into the problem setting. We investigate the question of existence of an optimal solution in these spaces and establish a Pontryagin type Maximum Principle as a necessary optimality condition including transversality conditions.
引用
收藏
页码:169 / 189
页数:21
相关论文
共 20 条
  • [11] IOFFE AD, 1979, THEORIE EXTREMALAUFG
  • [12] Kalman R. E., 1960, BOL SOC MATEM MEX, V5
  • [13] Kufner A., 1985, A Wiley-Interscience Publication
  • [14] Letov A.M., 1960, AUTOMAT REM CONTR, V21, P303
  • [15] Lykina V., 2010, THESIS BTU COTTBUS
  • [16] On a resource allocation model with infinite horizon
    Lykina, Valeriya
    Pickenhain, Sabine
    Wagner, Marcus
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) : 595 - 601
  • [17] PICKENHAIN S, 2006, LECT NOTES EC MATH S, V563, P217
  • [18] Pickenhain S., 2012, PREPRINT RE IN PRESS
  • [19] Pickenhain S, 2010, DYNAM MOD ECON ECON, V12, P3, DOI 10.1007/978-3-642-02132-9_1
  • [20] Yosida K, 2012, Functional Analysis