RECONSTRUCTING FT-IR SPECTROSCOPIC IMAGING DATA WITH A SPARSE PRIOR

被引:3
|
作者
Brady, Spencer P. [1 ,2 ]
Do, Minh N. [1 ,2 ]
Bhargava, Rohit [3 ,4 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL USA
基金
美国国家科学基金会;
关键词
FT-IR; K-SVD; l(1)-minimization; ALGORITHM;
D O I
10.1109/ICIP.2009.5414384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fourier Transform Infrared (FT-IR) spectroscopic imaging is a potentially valuable tool for diagnosing breast and prostate cancer, but its clinical deployment is limited due to long data acquisition times and vast storage requirements. To counter this limitation, we develop a sparse representation for FT-IR absorbance spectra using a learned dictionary. This sparse representation is used as prior knowledge in regularizing the compressed sensing inverse problem. The data size and acquisition time are directly proportional to the length of the measured signal, namely the interferogram. Hence, we model our measurement process as interferogram truncation, which we implement by low pass filtering and downsampling in the spectral domain. With a downsample factor of four, our reconstruction is adequate for tissue classification and provides a Peak Signal-to-noise Ratio (PSNR) of 41.92 dB, while standard interpolation of the same low resolution measurements can only provide a PSNR of 36.93 dB.
引用
收藏
页码:829 / +
页数:2
相关论文
共 50 条
  • [31] FT-IR imaging of polymers: an industrial appraisal
    Chalmers, JM
    Everall, NJ
    Schaeberle, MD
    Levin, IW
    Lewis, EN
    Kidder, LH
    Wilson, J
    Crocombe, R
    VIBRATIONAL SPECTROSCOPY, 2002, 30 (01) : 43 - 52
  • [32] Route to higher fidelity FT-IR imaging
    Bhargava, R
    Wang, SQ
    Koenig, JL
    APPLIED SPECTROSCOPY, 2000, 54 (04) : 486 - 495
  • [33] Fast FT-IR imaging: Theory and applications
    Koenig, JL
    Snively, CM
    SPECTROSCOPY, 1998, 13 (11) : 22 - 28
  • [34] Image reconstruction of FT-IR microspectrometric data
    Lasch, P
    Lewis, EN
    Kidder, LH
    Naumann, D
    SPECTRAL IMAGING: INSTRUMENTATION, APPLICATIONS, AND ANALYSIS, 2000, 1 : 129 - 139
  • [35] Probing organic ligands and their binding schemes on nanocrystals by mass spectrometric and FT-IR spectroscopic imaging
    Son, Jin Gyeong
    Choi, Eunjin
    Piao, Yuanzhe
    Han, Sang Woo
    Lee, Tae Geol
    NANOSCALE, 2016, 8 (08) : 4573 - 4578
  • [36] Performance and applications of a mid-infrared step scan FT-IR spectroscopic imaging system
    Wright, NA
    Crocombe, RA
    Drapcho, DL
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING V, PROCEEDINGS OF, 1998, 3261 : 208 - 214
  • [37] Label-Free Chemical Detection in Microfabricated Devices Using FT-IR Spectroscopic Imaging
    Chan, K. L. Andrew
    Kazarian, Sergei G.
    SPECTROSCOPY, 2013, : 22 - 27
  • [38] FT-IR spectroscopic imaging microscopy using an MCT focal-plane array detector
    Marcott, C
    Reeder, RC
    FOURIER TRANSFORM SPECTROSCOPY, 1998, (430): : 377 - 378
  • [39] Diagnostic Utility of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Preeclamptic Placenta Tissue
    Adelaja, Oluwatobi
    Varma, Vishal K.
    Macias, Virgilia
    Balla, Andre
    Walsh, Michael
    MODERN PATHOLOGY, 2017, 30 : 523A - 523A
  • [40] FT-IR spectroscopic analysis of kaolinite-microbial interactions
    Spence, Adrian
    Kelleher, Brian P.
    VIBRATIONAL SPECTROSCOPY, 2012, 61 : 151 - 155