NEW BOUNDS FOR THE CEBYSEV FUNCTIONAL OF TWO FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

被引:2
作者
Dragomir, S. S. [1 ]
机构
[1] Victoria Univ, Sch Engn & Sci, Melbourne, MC 8001, Australia
关键词
Selfadjoint operators; Synchronous (asynchronous) functions; Monotonic functions; Cebysev inequality; Functions of Selfadjoint operators; INEQUALITIES;
D O I
10.2298/FIL1002027D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new inequalities for the Cebysev functional of two functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved functions and operators, are given.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 11 条
[1]  
[Anonymous], J KSIAM
[2]  
[Anonymous], 2005, MONOGRAPHS INEQUALIT
[3]  
DRAGOMIR S. S., 1990, P 3 S MATH ITS APPL, P75
[4]  
Dragomir S. S., 2008, RGMIA RES REP COLL, V11
[5]  
Dragomir S. S., 2008, RGMIA RES REP COLL, V11
[6]  
Dragomir SS, 1988, P 2 S MATH ITS APPL, P61
[7]   A variant of Jensen's inequality of Mercer's type for operators with applications [J].
Matkovic, A. ;
Pecaric, J. ;
Peric, I. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :551-564
[8]   CP [J].
MCCARTHY, CA .
ISRAEL JOURNAL OF MATHEMATICS, 1967, 5 (04) :249-&
[9]  
MOND B, 1993, HOUSTON J MATH, V19, P405
[10]  
MOND B, 1994, UTILITAS MATHEMATICA, V46, P155