Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder

被引:9
作者
Stoccoro, Andrea [1 ]
Gallo, Roberta [1 ]
Calderoni, Sara [2 ,3 ]
Cagiano, Romina [2 ]
Muratori, Filippo [2 ,3 ]
Migliore, Lucia [1 ]
Grossi, Enzo [4 ]
Coppede, Fabio [1 ]
机构
[1] Univ Pisa, Med Sch, Dept Translat Res & New Surg & Med Technol, Via Roma 55, I-56126 Pisa, Italy
[2] IRCCS Stella Maris Fdn, I-56128 Pisa, Italy
[3] Univ Pisa, Dept Clin & Expt Med, Via Roma 55, I-56126 Pisa, Italy
[4] Villa Santa Maria Fdn, I-22038 Como, Italy
关键词
artificial neural networks; ASD; autism spectrum disorder; DNA methylation; epigenetics; maternal risk factors; sex difference; DNA METHYLATION; PROMOTER METHYLATION; PERIPHERAL-BLOOD; FRONTAL-CORTEX; BRAIN; BDNF; RELN; PREDICTORS; BIOMARKER; SYSTEM;
D O I
10.2217/epi-2022-0179
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aim and methods: Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Results: Methylation levels of MECP2, HTR1A and OXTR genes were connected to females, and those of EN2, BCL2 and RELN genes to males. High gestational weight gain, lack of folic acid supplements, advanced maternal age, preterm birth, low birthweight and living in rural context were the best predictors of a high ADOS-2 score. Conclusion: Artificial neural networks revealed links among ASD maternal risk factors, symptom severity, gene methylation levels and sex differences in methylation that warrant further investigation in ASD.
引用
收藏
页码:1181 / 1195
页数:16
相关论文
共 80 条
[11]   Clinical epigenetics: seizing opportunities for translation [J].
Berdasco, Maria ;
Esteller, Manel .
NATURE REVIEWS GENETICS, 2019, 20 (02) :109-127
[12]   Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring [J].
Blaze, Jennifer ;
Asok, Arun ;
Borrelli, Kristyn ;
Tulbert, Christina ;
Bollinger, Justin ;
Ronca, April E. ;
Roth, Tania L. .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2017, 62 :56-62
[13]   Genetic doping algorithm (GenD): theory and applications [J].
Buscema, M .
EXPERT SYSTEMS, 2004, 21 (02) :63-79
[14]  
Buscema M., 2013, J. Intell. Learn. Syst., V5, P29, DOI [10.4236/jilsa.2013.51004, DOI 10.4236/JILSA.2013.51004]
[15]  
Buscema M., 2012, DATA MINING APPL USI, P1, DOI [10.1007/978-1-4614-4223-3_1, DOI 10.1007/978-1-4614-4223-3_1]
[16]   Auto-Contractive Maps: An Artificial Adaptive System for Data Mining. An Application to Alzheimer Disease [J].
Buscema, Massimo ;
Grossi, Enzo ;
Snowdon, Dave ;
Antuono, Piero .
CURRENT ALZHEIMER RESEARCH, 2008, 5 (05) :481-vii
[17]  
Caffarra P, 2013, BEHAV NEUROL, V27, P213, DOI [10.1155/2013/728158, 10.3233/BEN-120319]
[19]   Evaluation of Chromosome Microarray Analysis in a Large Cohort of Females with Autism Spectrum Disorders: A Single Center Italian Study [J].
Calderoni, Sara ;
Ricca, Ivana ;
Balboni, Giulia ;
Cagiano, Romina ;
Cassandrini, Denise ;
Doccini, Stefano ;
Cosenza, Angela ;
Tolomeo, Deborah ;
Tancredi, Raffaella ;
Santorelli, Filippo Maria ;
Muratori, Filippo .
JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04) :1-18
[20]   Epigenetic Modifications Associated with Maternal Anxiety during Pregnancy and Children's Behavioral Measures [J].
Cao-Lei, Lei ;
van den Heuvel, Marion I. ;
Huse, Klaus ;
Platzer, Matthias ;
Elgbeili, Guillaume ;
Braeken, Marijke A. K. A. ;
Otte, Renee A. ;
Witte, Otto W. ;
Schwab, Matthias ;
van den Bergh, Bea R. H. .
CELLS, 2021, 10 (09)