Response to PD-1-Based Immunotherapy for Non-Small Cell Lung Cancer Altered by Gut Microbiota

被引:31
作者
He, Daqiang [1 ]
Li, Xing [3 ]
An, Rui [1 ]
Wang, Lihong [2 ]
Wang, Yun [4 ]
Zheng, Song [2 ]
Chen, Xueqing [3 ]
Wang, Xianjun [1 ]
机构
[1] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Sch Med, Dept Lab Med, Hangzhou 310006, Zhejiang, Peoples R China
[2] Zhejiang Univ, Affiliated Hangzhou Canc Hosp, Sch Med, Dept Med Oncol Ward 1, Hangzhou 310002, Zhejiang, Peoples R China
[3] Zhejiang Univ, Affiliated Hangzhou Canc Hosp, Sch Med, Dept Med Oncol MDT, Hangzhou 310002, Zhejiang, Peoples R China
[4] Zhejiang Univ, Affiliated Hangzhou Canc Hosp, Sch Med, Dept Lab Med, Hangzhou 310002, Zhejiang, Peoples R China
关键词
NSCLC; Gut microbiome; PD-1; Immunotherapy;
D O I
10.1007/s40487-021-00171-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction This study was designed to identify a group of bacteria in the human gut microbiota with specific effects on PD-1-based immunotherapy for patients with non-small cell lung cancer (NSCLC). Methods The study was performed in patients with advanced NSCLC, who received PD-1 monoclonal antibody (mAb) treatment for 6 months after one or several prior therapies. The combination of blood immune-related factors of the participants and their 16S rRNA gene sequencing from fecal samples at baseline was used to investigate the diversity and composition of the gut microbiota. The differences in relative abundance of gut microbiota at the genus level were compared, and the relation to blood immune-related factors was assessed using Spearman's rank correlation coefficient analysis. Results The 16S rRNA gene sequencing showed a clear difference in the diversity and composition of the gut microbiota between groups with stable disease (SD) and progressive disease (PD). A comparison of differences in relative abundance at the genus level showed that the relative abundance of Escherichia-Shigella, Akkermansia and Olsenella in the SD group was significantly higher than that in the PD group. The SD group had significantly higher interleukin-12 (IL-12) and interferon gamma (IFN-gamma) levels than the PD group. Interestingly, the numbers of white blood cells and sorted cells in the SD group were higher than those in the PD group. Spearman's rank correlation coefficient analysis showed that Escherichia-Shigella was positively correlated with IL-12, IFN-gamma and basophils. Akkermansia was positively correlated with monocytes. Conclusion The response to PD-1-based immunotherapy in patients with NSCLC is affected by the diversity and composition of the gut microbiota. Escherichia-Shigella and Akkermansia may have specific effects on PD-1 inhibitory immunotherapy for NSCLC.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 17 条
[1]   Microbial biomarkers for immune checkpoint blockade therapy against cancer [J].
Adachi, Keishi ;
Tamada, Koji .
JOURNAL OF GASTROENTEROLOGY, 2018, 53 (09) :999-1005
[2]   Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC) [J].
Brueckl, Wolfgang M. ;
Ficker, Joachim H. ;
Zeitler, Gloria .
BMC CANCER, 2020, 20 (01)
[3]   The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1 [J].
Derosa, Lisa ;
Routy, Bertrand ;
Kroemer, Guido ;
Zitvogel, Laurence .
ONCOIMMUNOLOGY, 2018, 7 (06)
[4]   Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes [J].
Doroshow, Deborah B. ;
Sanmamed, Miguel F. ;
Hastings, Katherine ;
Politi, Katerina ;
Rimm, David L. ;
Chen, Lieping ;
Melero, Ignacio ;
Schalper, Kurt A. ;
Herbst, Roy S. .
CLINICAL CANCER RESEARCH, 2019, 25 (15) :4592-4602
[5]   Neoadjuvant PD-1 Blockade in Resectable Lung Cancer [J].
Forde, P. M. ;
Chaft, J. E. ;
Smith, K. N. ;
Anagnostou, V. ;
Cottrell, T. R. ;
Hellmann, M. D. ;
Zahurak, M. ;
Yang, S. C. ;
Jones, D. R. ;
Broderick, S. ;
Battafarano, R. J. ;
Velez, M. J. ;
Rekhtman, N. ;
Olah, Z. ;
Naidoo, J. ;
Marrone, K. A. ;
Verde, F. ;
Guo, H. ;
Zhang, J. ;
Caushi, J. X. ;
Chan, H. Y. ;
Sidhom, J. -W. ;
Scharpf, R. B. ;
White, J. ;
Gabrielson, E. ;
Wang, H. ;
Rosner, G. L. ;
Rusch, V. ;
Wolchok, J. D. ;
Merghoub, T. ;
Taube, J. M. ;
Velculescu, V. E. ;
Topalian, S. L. ;
Brahmer, J. R. ;
Pardoll, D. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (21) :1976-1986
[6]   Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients [J].
Gopalakrishnan, V. ;
Spencer, C. N. ;
Nezi, L. ;
Reuben, A. ;
Andrews, M. C. ;
Karpinets, T. V. ;
Prieto, P. A. ;
Vicente, D. ;
Hoffman, K. ;
Wei, S. C. ;
Cogdill, A. P. ;
Zhao, L. ;
Hudgens, C. W. ;
Hutchinson, D. S. ;
Manzo, T. ;
de Macedo, M. Petaccia ;
Cotechini, T. ;
Kumar, T. ;
Chen, W. S. ;
Reddy, S. M. ;
Sloane, R. Szczepaniak ;
Galloway-Pena, J. ;
Jiang, H. ;
Chen, P. L. ;
Shpall, E. J. ;
Rezvani, K. ;
Alousi, A. M. ;
Chemaly, R. F. ;
Shelburne, S. ;
Vence, L. M. ;
Okhuysen, P. C. ;
Jensen, V. B. ;
Swennes, A. G. ;
McAllister, F. ;
Sanchez, E. Marcelo Riquelme ;
Zhang, Y. ;
Le Chatelier, E. ;
Zitvogel, L. ;
Pons, N. ;
Austin-Breneman, J. L. ;
Haydu, L. E. ;
Burton, E. M. ;
Gardner, J. M. ;
Sirmans, E. ;
Hu, J. ;
Lazar, A. J. ;
Tsujikawa, T. ;
Diab, A. ;
Tawbi, H. ;
Glitza, I. C. .
SCIENCE, 2018, 359 (6371) :97-103
[7]   The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy [J].
Gopalakrishnan, Vancheswaran ;
Helmink, Beth A. ;
Spencer, Christine N. ;
Reuben, Alexandre ;
Wargo, Jennifer A. .
CANCER CELL, 2018, 33 (04) :570-580
[8]   The Gut Microbiome Associates with Immune Checkpoint Inhibition Outcomes in Patients with Advanced Non-Small Cell Lung Cancer [J].
Hakozaki, Taiki ;
Richard, Corentin ;
Elkrief, Arielle ;
Hosomi, Yukio ;
Benlaifaoui, Myriam ;
Mimpen, Iris ;
Terrisse, Safae ;
Derosa, Lisa ;
Zitvogel, Laurence ;
Routy, Bertrand ;
Okuma, Yusuke .
CANCER IMMUNOLOGY RESEARCH, 2020, 8 (10) :1243-1250
[9]   The biology and management of non-small cell lung cancer [J].
Herbst, Roy S. ;
Morgensztern, Daniel ;
Boshoff, Chris .
NATURE, 2018, 553 (7689) :446-454
[10]   Lung Cancer: A Wily Genetic Opponent [J].
Hsu, Peggy P. ;
Shaw, Alice T. .
CELL, 2017, 169 (05) :777-779