Antioxidant Therapy in Parkinson's Disease: Insights from Drosophila melanogaster

被引:21
作者
De Lazzari, Federica [1 ]
Sandrelli, Federica [1 ]
Whitworth, Alexander J. [2 ]
Bisaglia, Marco [1 ]
机构
[1] Univ Padua, Dept Biol, I-35131 Padua, Italy
[2] Univ Cambridge, MRC, Mitochondrial Biol Unit, Cambridge Biomed Campus, Cambridge CB2 0XY, England
基金
英国医学研究理事会;
关键词
antioxidants; Drosophila melanogaster; oxidative damage; Parkinson's disease; SOD-mimetics; GENE DISRUPTION PROJECT; SUPEROXIDE-DISMUTASE; DOPAMINERGIC-NEURONS; OXIDATIVE STRESS; LIFE-SPAN; DIETARY SUPPLEMENTATION; LOCOMOTOR-ACTIVITY; DRUG DISCOVERY; MODEL; EFFICIENT;
D O I
10.3390/antiox9010052
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) play an important role as endogenous mediators in several cellular signalling pathways. However, at high concentrations they can also exert deleterious effects by reacting with many macromolecules including DNA, proteins and lipids. The precise balance between ROS production and their removal via numerous enzymatic and nonenzymatic molecules is of fundamental importance for cell survival. Accordingly, many neurodegenerative disorders, including Parkinson's disease (PD), are associated with excessive levels of ROS, which induce oxidative damage. With the aim of coping with the progression of PD, antioxidant compounds are currently receiving increasing attention as potential co-adjuvant molecules in the treatment of these diseases, and many studies have been performed to evaluate the purported protective effects of several antioxidant molecules. In the present review, we present and discuss the relevance of the use of Drosophila melanogaster as an animal model with which to evaluate the therapeutic potential of natural and synthetic antioxidants. The conservation of most of the PD-related genes between humans and D. melanogaster, along with the animal's rapid life cycle and the versatility of genetic tools, makes fruit flies an ideal experimental system for rapid screening of antioxidant-based treatments.
引用
收藏
页数:17
相关论文
共 117 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis [J].
Albrecht, Simone C. ;
Barata, Ana Gomes ;
Grosshans, Joerg ;
Teleman, Aurelio A. ;
Dick, Tobias P. .
CELL METABOLISM, 2011, 14 (06) :819-829
[3]   Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease [J].
Allison, AC ;
Cacabelos, R ;
Lombardi, VRM ;
Alvarez, XA ;
Vigo, C .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2001, 25 (07) :1341-1357
[4]   Drosophila D1 dopamine receptor mediates caffeine-induced arousal [J].
Andretic, Rozi ;
Kim, Young-Cho ;
Jones, Frederick S. ;
Han, Kyung-An ;
Greenspan, Ralph J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (51) :20392-20397
[5]  
[Anonymous], 1915, The mechanism of Mendelian heredity
[6]   Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System [J].
Bassett, Andrew R. ;
Tibbit, Charlotte ;
Ponting, Chris P. ;
Liu, Ji-Long .
CELL REPORTS, 2013, 4 (01) :220-228
[7]   The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes [J].
Bellen, HJ ;
Levis, RW ;
Liao, GC ;
He, YC ;
Carlson, JW ;
Tsang, G ;
Evans-Holm, M ;
Hiesinger, PR ;
Schulze, KL ;
Rubin, GM ;
Hoskins, RA ;
Spradling, AC .
GENETICS, 2004, 167 (02) :761-781
[8]   The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities [J].
Bellen, Hugo J. ;
Levis, Robert W. ;
He, Yuchun ;
Carlson, Joseph W. ;
Evans-Holm, Martha ;
Bae, Eunkyung ;
Kim, Jaeseob ;
Metaxakis, Athanasios ;
Savakis, Charalambos ;
Schulze, Karen L. ;
Hoskins, Roger A. ;
Spradling, Allan C. .
GENETICS, 2011, 188 (03) :731-U341
[9]   Efficient gene targeting in Drosophila with zinc-finger nucleases [J].
Beumer, K ;
Bhattacharyya, G ;
Bibikova, M ;
Trautman, JK ;
Carroll, D .
GENETICS, 2006, 172 (04) :2391-2403
[10]   Taking Stock of the Drosophila Research Ecosystem [J].
Bilder, David ;
Irvine, Kenneth D. .
GENETICS, 2017, 206 (03) :1227-1236