A Content-Based Recommendation System using TrueSkill
被引:2
作者:
Cruz Quispe, Laura
论文数: 0引用数: 0
h-index: 0
机构:
San Agustin Natl Univ, Informat Master Program, Arequipa, PeruSan Agustin Natl Univ, Informat Master Program, Arequipa, Peru
Cruz Quispe, Laura
[1
]
Ochoa Luna, Jose Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
San Agustin Natl Univ, Informat Master Program, Arequipa, Peru
San Pablo Catholic Univ, Res & Innovat Ctr Comp Sci, Arequipa, PeruSan Agustin Natl Univ, Informat Master Program, Arequipa, Peru
Ochoa Luna, Jose Eduardo
[1
,2
]
机构:
[1] San Agustin Natl Univ, Informat Master Program, Arequipa, Peru
[2] San Pablo Catholic Univ, Res & Innovat Ctr Comp Sci, Arequipa, Peru
来源:
2015 FOURTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI)
|
2015年
We present a probabilistic approach based on TrueSkill for Content-Based Recommendation Systems. On one hand, this proposal allow us to tackle the "cold start" problem because it relies on a content-based approach. On the other hand, it is valuable for handling high uncertainty since it solely depends on available items and ratings given by users. Thus, there is no dependency on the number of items and users. In addition, it is highly scalable because user preferences get richer as items get ranked.