Learning by Stimulation Avoidance as a Primary Principle of Spiking Neural Networks Dynamics

被引:1
作者
Sinapayen, Lana [1 ]
Masumori, Atsushi [1 ]
Virgo, Nathaniel [2 ]
Ikegami, Takashi [1 ]
机构
[1] Univ Tokyo, Ikegami Lab, Tokyo, Japan
[2] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo, Japan
来源
ECAL 2015: THE THIRTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE | 2015年
关键词
PLASTICITY; PATTERNS; NEURONS; MODEL; STDP;
D O I
10.7551/978-0-262-33027-5-ch037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Practical implementation of the concept of reward has deep implications on what artificial-life based systems can learn and how they learn it. How can a system distinguish between useful behavior and harmful behavior? In this paper we implement reward/punishment as the removal/application of a stimulation to a recurrent spiking neural network with spike-timing dependent plasticity. This implementation embodies the concept of reward at the level of the neuron, making learning mechanisms ubiquitous to the network. We show that this low-level learning scales up to the network level: the network learns arbitrary spatio-temporal firing patterns purely by interacting with the environment, from a random initial state where virtually no knowledge is available. This approach yields fast, noise-robust results.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 17 条
[1]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[2]   Reconciling the STDP and BCM Models of Synaptic Plasticity in a Spiking Recurrent Neural Network [J].
Bush, Daniel ;
Philippides, Andrew ;
Husbands, Phil ;
O'Shea, Michael .
NEURAL COMPUTATION, 2010, 22 (08) :2059-2085
[3]   Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity [J].
Canepari, M ;
Bove, M ;
Maeda, E ;
Cappello, M ;
Kawana, A .
BIOLOGICAL CYBERNETICS, 1997, 77 (02) :153-162
[4]   Spike timing-dependent plasticity: A Hebbian learning rule [J].
Caporale, Natalia ;
Dan, Yang .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :25-46
[5]   CB: a humanoid research platform for exploring neuroscience [J].
Cheng, Gordon ;
Hyon, Sang-Ho ;
Morimoto, Jun ;
Ude, Ales ;
Hale, Joshua G. ;
Colvin, Glenn ;
Scroggin, Wayco ;
Jacobsen, Stephen C. .
ADVANCED ROBOTICS, 2007, 21 (10) :1097-1114
[6]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[7]  
Hebb D. O., 1949, ORG BEHAV NEUROPSYCH
[8]   Which model to use for cortical spiking neurons? [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05) :1063-1070
[9]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[10]   Solving the distal reward problem through linkage of STDP and dopamine signaling [J].
Izhikevich, Eugene M. .
CEREBRAL CORTEX, 2007, 17 (10) :2443-2452