On the regularity of the ω-minima of φ-functionals

被引:8
作者
De Filippis, Cristiana [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Regularity; omega-minima; phi-functionals; Orlicz spaces; SINGULAR SET; ELLIPTIC-EQUATIONS; HOLDER REGULARITY; MINIMIZERS; EXISTENCE;
D O I
10.1016/j.na.2019.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus on some regularity properties of omega-minima of variational integrals with phi-growth and provide an upper bound on the Hausdorff dimension of their singular set. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:25
相关论文
共 49 条
[31]  
Giannetti F, 2017, ANN MAT PUR APPL, V196, P2147, DOI 10.1007/s10231-017-0658-z
[32]  
Gilbarg D., 1977, GRUNDLEHREN MATH WIS, V224
[33]  
Giusti E., 2003, DIRECT METHODS CALCU, DOI [DOI 10.1142/5002, 10.1142/5002, DOI 10.1142/9789812795557]
[34]   Holder regularity of quasiminimizers under generalized growth conditions [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Toivanen, Olli .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[35]   The singular set of ω-minima [J].
Kristensen, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 177 (01) :93-114
[36]   The singular set of Lipschitzian minima of multiple integrals [J].
Kristensen, Jan ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 184 (02) :341-369
[37]   Vectorial nonlinear potential theory [J].
Kuusi, Tuomo ;
Mingione, Giuseppe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (04) :929-1004
[38]   NONLOCAL SELF-IMPROVING PROPERTIES [J].
Kuusi, Tuomo ;
Mingione, Giuseppe ;
Sire, Yannick .
ANALYSIS & PDE, 2015, 8 (01) :57-114
[39]   Guide to nonlinear potential estimates [J].
Kuusi, Tuomo ;
Mingione, Giuseppe .
BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (01) :1-82
[40]   THE NATURAL GENERALIZATION OF THE NATURAL CONDITIONS OF LADYZHENSKAYA AND URALTSEVA FOR ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :311-361