Carbohydrates in the thermodynamically disfavored furanose ring conformation are not present in mammalian glycoconjugates, but are widespread in the glycans produced by many bacterial pathogens. In bacteria, these furanose sugars are often found in cell surface glycoconjugates, and are essential for the viability or virulence of the organisms. As a result, the enzymes involved in the biosynthesis of bacterial furanosides are attractive targets as potential selective antimicrobial chemotherapeutics. However, before such chemotherapeutics can be designed, synthesized, and evaluated, more information about the activity and specificity of these enzymes is required. This chapter describes assays that have been used to study enzymes involved in the biosynthesis of one of the most abundant naturally occurring furanose residues, galactofuranose (Galf). In particular, the focus is on UDP-galactopyranose mutase and galactofuranosyltransferases. The assays described in this chapter require UDP-galactofuranose (UDP-Galf); therefore, a procedure for the preparation of UDP-Galf, as well as various UDP-Galf derivatives, using a three-enzyme chemoenzymatic procedure, is also described.