Ill-posedness for the Camassa-Holm and related equations in Besov spaces

被引:29
|
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Camassa-Holm equation; Shallow water wave models; Ill-posedness; Besov space; SHALLOW-WATER EQUATION; WELL-POSEDNESS; NONUNIFORM DEPENDENCE; CAUCHY-PROBLEM; INITIAL DATA; EXISTENCE; TRAJECTORIES; STABILITY; BREAKING; FAMILY;
D O I
10.1016/j.jde.2021.10.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a construction of u(0) is an element of B-p,infinity(sigma) such that the corresponding solution to the Camassa-Holm equation starting from u(0) is discontinuous at t = 0 in the metric of B-p,infinity(sigma), which implies the ill-posedness for this equation in B-p,infinity(sigma). We also apply our method to the b-equation and Novikov equation. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [41] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 1 - 19
  • [42] Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5318 - 5369
  • [43] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [44] Ill-posedness for a generalized Camassa–Holm equation with higher-order nonlinearity in the critical Besov space
    Wei Deng
    Min Li
    Xing Wu
    Weipeng Zhu
    Monatshefte für Mathematik, 2024, 203 : 843 - 857
  • [45] LOCAL WELL-POSEDNESS OF THE CAMASSA-HOLM EQUATION ON THE REAL LINE
    Lee, Jae Min
    Preston, Stephen C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3285 - 3299
  • [46] Well-posedness of the modified Camassa–Holm equation in Besov spaces
    Hao Tang
    Zhengrong Liu
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1559 - 1580
  • [47] Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    The Journal of Geometric Analysis, 2023, 33
  • [48] Ill-posedness for the 2D viscous shallow water equations in the critical Besov spaces
    Li, Jinlu
    Hong, Pingzhou
    Zhu, Weipeng
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1287 - 1299
  • [49] Non-uniform Dependence on Initial Data for the Camassa-Holm Equation in the Critical Besov Space
    Li, Jinlu
    Wu, Xing
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (02)
  • [50] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Fei, Xiang
    Yu, Yanghai
    Fei, Mingwen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):