Ill-posedness for the Camassa-Holm and related equations in Besov spaces

被引:32
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Camassa-Holm equation; Shallow water wave models; Ill-posedness; Besov space; SHALLOW-WATER EQUATION; WELL-POSEDNESS; NONUNIFORM DEPENDENCE; CAUCHY-PROBLEM; INITIAL DATA; EXISTENCE; TRAJECTORIES; STABILITY; BREAKING; FAMILY;
D O I
10.1016/j.jde.2021.10.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a construction of u(0) is an element of B-p,infinity(sigma) such that the corresponding solution to the Camassa-Holm equation starting from u(0) is discontinuous at t = 0 in the metric of B-p,infinity(sigma), which implies the ill-posedness for this equation in B-p,infinity(sigma). We also apply our method to the b-equation and Novikov equation. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 35 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[2]   Existence time for the Camassa-Holm equation and the critical Sobolev index [J].
Byers, Peter .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (03) :941-954
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[5]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[6]  
2-5
[7]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[8]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[9]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[10]  
Constantin A., 1997, EXPO MATH, V15, P53