Scanning probe lithography on graphene

被引:26
作者
Neubeck, Soeren [1 ]
Freitag, Frank [1 ]
Yang, Rui [1 ]
Novoselov, Kostya S. [1 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2010年 / 247卷 / 11-12期
关键词
graphene; local anodic oxidation; nanostructures; oxidation kinetics; OXIDATION; NANOSTRUCTURES; GRAPHITE; MODEL;
D O I
10.1002/pssb.201000186
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we want to outline the principles of how scanning probe lithography on graphene is performed. We will show several examples of structures etched in graphene using this technique, including an example of a nanoelectronic device. In the last part, we present data regarding the oxidation kinetics when performing scanning probe lithography on graphite (HOPG). [GRAPHICS] Two lines oxidized in graphene using scanning probe lithography. The left line (indicated by the arrow) is only 30 nm wide, indicating that this technique has good enough resolution to create nanoelectronic device structures. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2904 / 2908
页数:5
相关论文
共 22 条
[1]   NANOMETER-SCALE HOLE FORMATION ON GRAPHITE USING A SCANNING TUNNELING MICROSCOPE [J].
ALBRECHT, TR ;
DOVEK, MM ;
KIRK, MD ;
LANG, CA ;
QUATE, CF ;
SMITH, DPE .
APPLIED PHYSICS LETTERS, 1989, 55 (17) :1727-1729
[2]   STM AND AFM OBSERVATIONS OF LATENT TRACKS [J].
BOUFFARD, S ;
COUSTY, J ;
PENNEC, Y ;
THIBAUDAU, F .
RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1993, 126 (1-4) :225-228
[3]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[4]   Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution [J].
Choo, Hyun-Suk ;
Kinumoto, Taro ;
Jeong, Soon-Ki ;
Iriyama, Yasutoshi ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :B1017-B1023
[5]   Predictive model for scanned probe oxidation kinetics [J].
Dagata, JA ;
Perez-Murano, F ;
Abadal, G ;
Morimoto, K ;
Inoue, T ;
Itoh, J ;
Yokoyama, H .
APPLIED PHYSICS LETTERS, 2000, 76 (19) :2710-2712
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Nanolithography and manipulation of graphene using an atomic force microscope [J].
Giesbers, A. J. M. ;
Zeitler, U. ;
Neubeck, S. ;
Freitag, F. ;
Novoselov, K. S. ;
Maan, J. C. .
SOLID STATE COMMUNICATIONS, 2008, 147 (9-10) :366-369
[8]   ANALYSIS OF LATERAL FORCE EFFECTS ON THE TOPOGRAPHY IN SCANNING FORCE MICROSCOPY [J].
GRAFSTROM, S ;
ACKERMANN, J ;
HAGEN, T ;
NEUMANN, R ;
PROBST, O .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (03) :1559-1564
[9]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope [J].
Held, R ;
Vancura, T ;
Heinzel, T ;
Ensslin, K ;
Holland, M ;
Wegscheider, W .
APPLIED PHYSICS LETTERS, 1998, 73 (02) :262-264