Experimental investigations of high-temperature shell and multi-tube latent heat storage system

被引:31
作者
Sodhi, Gurpreet Singh [1 ]
Vigneshwaran, K. [2 ]
Muthukumar, P. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Mech Engn, Gauhati 781039, Assam, India
[2] Indian Inst Technol Guwahati, Ctr Energy, Gauhati 781039, Assam, India
关键词
High temperature; Thermal energy storage; Latent heat; Phase Change Material; Multi tube; Air; Heat transfer fluid; THERMAL-ENERGY STORAGE; PHASE-CHANGE MATERIALS; TRANSFER ENHANCEMENT; TRANSFER FLUIDS; PCM; PERFORMANCE; PARAFFIN; BEHAVIOR; TUBES; AIR;
D O I
10.1016/j.applthermaleng.2021.117491
中图分类号
O414.1 [热力学];
学科分类号
摘要
High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 degrees C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of similar to 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 degrees C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications.
引用
收藏
页数:15
相关论文
共 55 条
[1]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[2]   Curbing global warming with phase change materials for energy storage [J].
Anisur, M. R. ;
Mahfuz, M. H. ;
Kibria, M. A. ;
Saidur, R. ;
Metselaar, I. H. S. C. ;
Mahlia, T. M. I. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 :23-30
[3]  
[Anonymous], 2019, Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects
[4]   Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit [J].
Avci, Mete ;
Yazici, M. Yusuf .
ENERGY CONVERSION AND MANAGEMENT, 2013, 73 :271-277
[5]   Latent thermal energy storage for solar process heat applications at medium-high temperatures - A review [J].
Crespo, Alicia ;
Barreneche, Camila ;
Ibarra, Mercedes ;
Platzer, Werner .
SOLAR ENERGY, 2019, 192 :3-34
[6]   Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification [J].
Ebadi, Soroush ;
Tasnim, Syeda Humaira ;
Aliabadi, Amir A. ;
Mahmud, Shohel .
ENERGY CONVERSION AND MANAGEMENT, 2018, 166 :241-259
[7]   Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis [J].
Elmozughi, Ali F. ;
Solomon, Laura ;
Oztekin, Alparslan ;
Neti, Sudhakar .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 :1135-1144
[8]   An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications [J].
Fadl, Mohamed ;
Eames, Philip C. .
ENERGY, 2019, 188
[9]  
Gmbh P.S.I., 2000, NRELSR55027925, P61
[10]   Towards a commercial parabolic trough CSP system using air as heat transfer fluid [J].
Good, P. ;
Zanganeh, G. ;
Ambrosetti, G. ;
Barbato, M. C. ;
Pedretti, A. ;
Steinfeld, A. .
PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 :381-385