Grading Method for Hypoxic-Ischemic Encephalopathy Based on Neonatal EEG

被引:8
作者
Guo, Jingmin [1 ]
Cheng, Xiu [1 ]
Wu, Duanpo [2 ,3 ]
机构
[1] Fujian Med Univ, Affiliated Hosp, Fujian Prov Matern & Childrens Hosp, Fuzhou, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou, Peoples R China
[3] Hangzhou Neuro Sci & Technol Co Ltd, Hangzhou, Peoples R China
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2020年 / 122卷 / 02期
关键词
Hypoxic-ischemic encephalopathy; electroencephalograph; neonate; support vector machine; ASPHYXIATED NEWBORNS; SEVERITY; DYNAMICS; SEIZURES; OUTCOMES; SIGNALS; SYSTEM;
D O I
10.32604/cmes.2020.07470
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The grading of hypoxic-ischemic encephalopathy (HIE) contributes to the clinical decision making for neonates with HIE. In this paper, an automated grading method based on electroencephalogram (EEG) data is proposed to describe the severity of HIE infants, namely mild asphyxia, moderate asphyxia and severe asphyxia. The automated grading method is based on a multi-class support vector machine (SVM) classifier, and the input features of SVM classifier include long-term features which are extracted by decomposing the EEG data into different 64 s epoch data and short-term features which are extracted by segmenting the 64 s epoch data into 8 s epoch data with 4 s overlap. Of note, the correlation coefficient and asymmetry extracted in this paper have obvious discriminating capability in HIE infants classification. The experimental results show that the proposed method can achieve the classification accuracy of 78.3%, 75.8% and 87.0% of the mild asphyxia group, moderate asphyxia group and severe asphyxia group, respectively. Moreover, the overall accuracy and kappa used to evaluate the performance of the proposed method can reach 79.5% and 0.69, respectively.
引用
收藏
页码:721 / 741
页数:21
相关论文
共 39 条
[1]   Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William P. ;
Boylan, Geraldine ;
Lightbody, Gordon .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 :100-110
[2]   Grading hypoxic-ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William ;
Lightbody, Gordon ;
Boylan, Geraldine .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) :297-309
[3]   Predicting outcomes of neonates diagnosed with hypoxemic-ischemic encephalopathy [J].
Ambalavanan, Namasivayam ;
Carlo, Waldemar A. ;
Shankaran, Seetha ;
Bann, Carla M. ;
Emrich, Steven L. ;
Higgins, Rosemary D. ;
Tyson, Jon E. ;
O'Shea, T. Michael ;
Laptook, Abbot R. ;
Ehrenkranz, Richard A. ;
Donovan, Edward F. ;
Walsh, Michele C. ;
Goldberg, Ronald N. ;
Das, Abhik .
PEDIATRICS, 2006, 118 (05) :2084-2093
[4]   Self-Correcting Pattern Recognition System of Surface EMG Signals for Upper Limb Prosthesis Control [J].
Amsuess, Sebastian ;
Goebel, Peter M. ;
Jiang, Ning ;
Graimann, Bernhard ;
Paredes, Liliana ;
Farina, Dario .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (04) :1167-1176
[5]   Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor [J].
Ansari, A. H. ;
Cherian, P. J. ;
Dereymaeker, A. ;
Matic, V. ;
Jansen, K. ;
De Wispelaere, L. ;
Dielman, C. ;
Vervisch, J. ;
Swarte, R. M. ;
Govaert, P. ;
Naulaers, G. ;
De Vos, M. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) :3014-3024
[6]   EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review [J].
Awal, Md. Abdul ;
Lai, Melissa M. ;
Azemi, Ghasem ;
Boashash, Boualem ;
Colditz, Paul B. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) :285-296
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   EEG findings in cooled asphyxiated newborns and correlation with site and severity of brain damage [J].
Briatore, Eleonora ;
Ferrari, Fabrizio ;
Pomero, Giulia ;
Boghi, Andrea ;
Gozzoli, Luigi ;
Micciolo, Rocco ;
Espa, Giuseppe ;
Gancia, Paolo ;
Calzolari, Stefano .
BRAIN & DEVELOPMENT, 2013, 35 (05) :420-426
[9]  
COX DR, 1958, J R STAT SOC B, V20, P215
[10]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575