Artificial neural networks for supporting production planning and control

被引:6
作者
Corsten, H
May, C
机构
[1] Universität Kaiserslautern, Lehrst. Allg. B., Insbesondere Produktionswirtschaft, D-67663 Kaiserslautern, Gottlieb-Daimler-Str
[2] Wirtschaftswissenschaftliche Fak. I., Lehrst. fur Produktionswirtschaft, D-85049 Ingolstadt
关键词
D O I
10.1016/0166-4972(95)00024-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent times artificial neural networks have been receiving increasing attention as tools for business applications. In this paper we will analyse the surveys on production scheduling with artificial neural networks and discuss the various approaches as well as their limitations. Furthermore, we will show the potential for using artificial neural networks for production planning and control. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:67 / 76
页数:10
相关论文
共 44 条
[1]   SCHEDULING FOR MINIMIZING TOTAL ACTUAL FLOW TIME BY NEURAL NETWORKS [J].
ARIZONO, I ;
YAMAMOTO, A ;
OHTA, H .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1992, 30 (03) :503-511
[2]  
Balzer D., 1992, Automatisierungstechnische Praxis, V34, P395
[3]  
BECKER J, 1994, 15 SAARBR ARB 1994 R, P157
[4]  
DORFFNER G, 1991, KONNEKTIONISMUS NEUR
[5]  
FAISST J, 1993, HIERARCHISHE PLANUNG
[6]  
Fausett L. V., 1993, FUNDAMENTALS NEURAL
[7]  
FOO SY, 1988, P IEEE IJCNN 88 SAN, P341
[8]  
FOO YPS, 1988, P IEEE ICNN 88, P275
[9]  
FOO YPS, 1988, P 1988 IEEE INT C NE, P283
[10]  
GLASER H, 1992, PPS PRODUKTIONSPLANN