Experimental observation of dynamics near the torus-doubling terminal critical point

被引:36
作者
Bezruchko, BP
Kuznetsov, SP
Seleznev, YP
机构
[1] Russian Acad Sci, Inst Radio Engn & Elect, Saratov Branch, Saratov 410019, Russia
[2] Saratov State Univ, Dept Phys, Saratov 410026, Russia
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevE.62.7828
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A nonlinear electronic circuit driven by two signals with golden mean frequency ratio is studied. We have observed different dynamical regimes, including tori, doubled tori, strange nonchaotic attractors, and chaos, which all meet together at the critical point terminating the torus-doubling bifurcation curve (TDT point) in the parameter plane of the system. The parameter plane arrangement, spectra, and portraits of attractors observed in the experiment are in reasonable coincidence with numerical computations for a quasiperiodically forced logistic map, where the TDT critical point originally has been found and studied theoretically CS. Kuznetsov, A. Pikovsky, and U. Feudel, Phys. Rev. E 57, 1585 (1998)].
引用
收藏
页码:7828 / 7830
页数:3
相关论文
共 26 条
[1]  
Anishchenko V., 1995, DYNAMICAL CHAOS MODE
[2]   Mechanisms of ergodic torus destruction and appearance of strange nonchaotic attractors [J].
Anishchenko, VS ;
Vadivasova, TE ;
Sosnovtseva, O .
PHYSICAL REVIEW E, 1996, 53 (05) :4451-4456
[3]   CASCADE OF PERIOD DOUBLINGS OF TORI [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA .
PHYSICS LETTERS A, 1983, 94 (01) :1-6
[4]   SCALING FOR A PERIODIC FORCING OF A PERIOD-DOUBLING SYSTEM [J].
ARNEODO, A .
PHYSICAL REVIEW LETTERS, 1984, 53 (13) :1240-1243
[5]  
ASTACHOV VV, 1987, RADIOTEKH ELEKTRON+, V32, P2558
[6]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[7]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[8]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[9]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[10]   STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP [J].
FEUDEL, U ;
KURTHS, J ;
PIKOVSKY, AS .
PHYSICA D, 1995, 88 (3-4) :176-186