Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature

被引:110
作者
Yang, L [1 ]
Liu, JB [1 ]
Yang, KQ [1 ]
机构
[1] Lanzhou Univ, Dept Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mathematical transformations - Partial differential equations;
D O I
10.1016/S0375-9601(00)00778-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method to construct the exact solution of the PDE is presents, which combines the two kind methods - the nonlinear transformation and RQ (reduction of the PDE to a quadrature problem) method. The nonlinear diffusion equation is chosen to illustrate the method and the exact solutions are obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 270
页数:4
相关论文
共 10 条
[1]   SIMILARITY REDUCTIONS FROM EXTENDED PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1991, 53 (01) :59-70
[2]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[3]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[4]  
HUIBIN L, 1990, J PHYS A, V23, P3923
[5]   HIROTAS METHOD AND THE SINGULAR MANIFOLD EXPANSION [J].
NOZAKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3052-3054
[6]   EXACT TRAVELING WAVE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION-EQUATIONS BY REDUCTION TO A QUADRATURE [J].
OTWINOWSKI, M ;
PAUL, R ;
LAIDLAW, WG .
PHYSICS LETTERS A, 1988, 128 (09) :483-487
[7]   THE CLASSICAL LIMIT FOR THE HOLSTEIN-PRIMAKOFF REPRESENTATION IN THE SOLITON THEORY OF HEISENBERG-CHAINS [J].
SKRINJAR, MJ ;
KAPOR, DV ;
STOJANOVIC, SD .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (04) :725-732
[8]   Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].
Wang, ML ;
Zhou, YB ;
Li, ZB .
PHYSICS LETTERS A, 1996, 216 (1-5) :67-75
[9]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[10]   Exact solutions of nonlinear equations [J].
Yang, L ;
Zhu, ZG ;
Wang, YH .
PHYSICS LETTERS A, 1999, 260 (1-2) :55-59