No pane, no gain: Efficient evaluation of sliding-window aggregates over data streams

被引:0
|
作者
Li, J [1 ]
Maier, D
Tufte, K
Papadimos, V
Tucker, PA
机构
[1] Portland State Univ, Portland, OR 97207 USA
[2] Whitworth Coll, Spokane, WA USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Window queries are proving essential to data-stream processing. In this paper, we present an approach for evaluating sliding-window aggregate queries that reduces both space and computation time for query execution. Our approach divides overlapping windows into disjoint panes, computes sub-aggregates over each pane, and "rolls up" the pane-aggregates to compute window-aggregates. Our experimental study shows that using panes has significant performance benefits.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 50 条
  • [1] Incremental evaluation of sliding-window queries over data streams
    Ghanem, Thanaa M.
    Hammad, Moustafa A.
    Mokbel, Mohamed F.
    Aref, Walid G.
    Elmagarmid, Ahmed K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (01) : 57 - 72
  • [2] Extending Sliding-Window Semantics over Data Streams
    Chen, Leisong
    Lin, Guoping
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 2, PROCEEDINGS, 2008, : 110 - +
  • [3] Sketching distributed sliding-window data streams
    Papapetrou, Odysseas
    Garofalakis, Minos
    Deligiannakis, Antonios
    VLDB JOURNAL, 2015, 24 (03): : 345 - 368
  • [4] Sketching distributed sliding-window data streams
    Odysseas Papapetrou
    Minos Garofalakis
    Antonios Deligiannakis
    The VLDB Journal, 2015, 24 : 345 - 368
  • [5] HEE-Sketch: an Efficient Sketch for Sliding-Window Frequency Estimation over Skewed Data Streams
    Sun, Shuhao
    Zheng, Jingwei
    Li, Dagang
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 736 - 743
  • [6] Sliding-Window Probabilistic Threshold Aggregate Queries on Uncertain Data Streams
    Chen, Donghui
    Chen, Ling
    INFORMATION SCIENCES, 2020, 520 (520) : 353 - 372
  • [7] Sketch-based Querying of Distributed Sliding-Window Data Streams
    Papapetrou, Odysseas
    Garofalakis, Minos
    Deligiannakis, Antonios
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (10): : 992 - 1003
  • [8] Maintaining Wavelet Synopses for Sliding-Window Aggregates
    Mytilinis, Ioannis
    Tsoumakos, Dimitrios
    Koziris, Nectarios
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2019), 2019, : 73 - 84
  • [9] Relatively effective and practical load shedding strategy for sliding-window join queries over data streams
    Northwestern Polytechnical University, Xi'an 710072, China
    不详
    Xibei Gongye Daxue Xuebao, 2006, 5 (595-599):
  • [10] A performance evaluation of data streams sampling algorithms over a sliding window
    El Sibai, Rayane
    Chabchoub, Yousra
    Demerjian, Jacques
    Chiky, Raja
    Barbar, Kablan
    2018 IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2018, : 211 - 216