Preserving commutativity

被引:36
作者
Omladic, M
Radjavi, H
Semrl, P
机构
[1] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
[2] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 4H8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0022-4049(99)00154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every commutativity preserving linear map on the algebra of all n x n matrices over an algebraically closed field F with characteristic 0 is either a Jordan automorphism multiplied by a nonzero constant and perturbed by a scalar type operator, or its image is commutative. The assumption of preserving commutativity can be reformulated as preserving zero Lie products. So, this theorem is an extension of the well-known result on the structure of Lie homomorphisms of matrix algebras. We first prove the result for the special case in which F is the complex field and then apply the transfer principle in Model Theoretic Algebra to extend it to the general case. (C) 2001 Elsevier Science B.V. All rights reserved. MSC. 15A04; 15A27.
引用
收藏
页码:309 / 328
页数:20
相关论文
共 50 条
[21]   A note on additive commutativity-preserving mappings [J].
Petek, T .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2) :53-61
[22]   Non-linear commutativity preserving maps [J].
Semrl, Peter .
ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (3-4) :781-819
[23]   STRONG COMMUTATIVITY PRESERVING MAPS ON TRIANGULAR RINGS [J].
Qi, Xiaofei ;
Hou, Jinchuan .
OPERATORS AND MATRICES, 2012, 6 (01) :147-158
[24]   NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS [J].
Zhang, Wei ;
Xu, Xiaowei .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) :1127-1133
[25]   Linear maps preserving quasi-commutativity [J].
Radjavi, Heydar ;
Semrl, Peter .
STUDIA MATHEMATICA, 2008, 184 (02) :191-204
[26]   Mappings preserving spectrum and commutativity on Hermitian matrices [J].
Petek, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 290 (1-3) :167-191
[27]   Additive maps preserving rank commutativity on triangular matrices [J].
Zhang, Yang ;
Zheng, Baodong .
ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, :81-84
[28]   ON STRONG COMMUTATIVITY PRESERVING LIKE MAPS IN RINGS WITH INVOLUTION [J].
Ali, Shakir ;
Dar, Nadeem Ahmad ;
Khan, Abdul Nadim .
MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) :17-24
[29]   COMMUTATIVITY-PRESERVING OPERATORS ON SYMMETRIC-MATRICES [J].
RADJAVI, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 61 (SEP) :219-224
[30]   Strong commutativity preserving generalized derivations on Lie ideals [J].
Liu, Cheng-Kai ;
Liau, Pao-Kuei .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08) :905-915