A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO2 Reduction at High Current Densities

被引:71
作者
Wang, Xinyue [1 ]
Feng, Shaohua [1 ]
Lu, Weichao [3 ]
Zhao, Yingjie [1 ]
Zheng, Sixing [1 ]
Zheng, Wanzhen [1 ]
Sang, Xiahan [3 ]
Zheng, Lirong [6 ]
Xie, Yu [4 ]
Li, Zhongjian [1 ]
Yang, Bin [1 ]
Lei, Lecheng [1 ,2 ]
Wang, Shaobin [5 ]
Hou, Yang [1 ,2 ]
机构
[1] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[2] Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Nanostruct Res Ctr, Wuhan 430070, Peoples R China
[4] Nanchang Hangkong Univ, Dept Mat Chem, Nanchang, Jiangxi, Peoples R China
[5] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[6] Chinese Acad Sci, Beijing Synchrotron Radiat Facil, Inst High Energy Phys, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
accelerating proton transfer; CO; (2) electroreduction; high current density; single atom catalysts; Zn-CO; (2) batteries; SITES; ELECTROREDUCTION; CATALYSTS;
D O I
10.1002/adfm.202104243
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing single-atom electrocatalysts with high activity and superior selectivity at a wide potential window for CO2 reduction reaction (CO2RR) still remains a great challenge. Herein, a porous Ni-N-C catalyst containing atomically dispersed Ni-N-4 sites and nanostructured zirconium oxide (ZrO2@Ni-NC) synthesized via a post-synthetic coordination coupling carbonization strategy is reported. The as-prepared ZrO2@Ni-NC exhibits an initial potential of -0.3 V, maximum CO Faradaic efficiency (F.E.) of 98.6% +/- 1.3, and a low Tafel slope of 71.7 mV dec(-1) in electrochemical CO2RR. In particular, a wide potential window from -0.7 to -1.4 V with CO F.E. of above 90% on ZrO2@Ni-NC far exceeds those of recently developed state-of-the-art CO2RR electrocatalysts based on Ni-N moieties anchored carbon. In a flow cell, ZrO2@Ni-NC delivers a current density of 200 mA cm(-2) with a superior CO selectivity of 96.8% at -1.58 V in a practical scale. A series of designed experiments and structural analyses identify that the isolated Ni-N-4 species act as real active sites to drive the CO2RR reaction and that the nanostructured ZrO2 largely accelerates the protonation process of *CO2- to *COOH intermediate, thus significantly reducing the energy barrier of this rate-determining step and boosting whole catalytic performance.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV
    Calvinho, Karin U. D.
    Laursen, Anders B.
    Yap, Kyra M. K.
    Goetjen, Timothy A.
    Hwang, Shinjae
    Murali, Nagarajan
    Mejia-Sosa, Bryan
    Lubarski, Alexander
    Teeluck, Krishani M.
    Hall, Eugene S.
    Garfunkel, Eric
    Greenblatt, Martha
    Dismukes, G. Charles
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2550 - 2559
  • [2] Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts
    Chen, Jiayi
    Wang, Tingting
    Li, Zhongjian
    Yang, Bin
    Zhang, Qinghua
    Lei, Lecheng
    Feng, Pingyun
    Hou, Yang
    [J]. NANO RESEARCH, 2021, 14 (09) : 3188 - 3207
  • [3] Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogen-Doped Carbons with Encapsulated Metal Nanoparticles
    Chen, Ming-Xi
    Zhu, Mengzhao
    Zuo, Ming
    Chu, Sheng-Qi
    Zhang, Jing
    Wu, Yuen
    Liang, Hai-Wei
    Feng, Xinliang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (04) : 1627 - 1633
  • [4] Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
    Chen, Yihong
    Li, Christina W.
    Kanan, Matthew W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 19969 - 19972
  • [5] Understanding Surface-Mediated Electrochemical Reactions: CO2 Reduction and Beyond
    Dunwell, Marco
    Luc, Wesley
    Yan, Yushan
    Jiao, Feng
    Xu, Bingjun
    [J]. ACS CATALYSIS, 2018, 8 (09): : 8121 - 8129
  • [6] Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction
    Feng, Shaohua
    Zheng, Wanzhen
    Zhu, Jingke
    Li, Zhongjian
    Yang, Bin
    Wen, Zhenhai
    Lu, Jianguo
    Lei, Lecheng
    Wang, Shaobin
    Hou, Yang
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
  • [7] Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO
    Gu, Jun
    Hsu, Chia-Shuo
    Bai, Lichen
    Chen, Hao Ming
    Hu, Xile
    [J]. SCIENCE, 2019, 364 (6445) : 1091 - +
  • [8] Tunable Cobalt-Polypyridyl Catalysts Supported on Metal-Organic Layers for Electrochemical CO2 Reduction at Low Overpotentials
    Guo, Ying
    Wang, Yucheng
    Shen, Yan
    Cai, Zhuanyun
    Li, Zhe
    Liu, Jia
    Chen, Jiawei
    Xiao, Chi
    Liu, Huichong
    Lin, Wenbin
    Wang, Cheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) : 21493 - 21501
  • [9] Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity
    Hou, Ying
    Liang, Yu-Lin
    Shi, Peng-Chao
    Huang, Yuan-Biao
    Cao, Rong
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 271
  • [10] Unraveling the Reactivity and Selectivity of Atomically Isolated Metal-Nitrogen Sites Anchored on Porphyrinic Triazine Frameworks for Electroreduction of CO2
    Hou, Ying
    Huang, Yuan-Biao
    Liang, Yu-Lin
    Chai, Guo-Liang
    Yi, Jun-Dong
    Zhang, Teng
    Zang, Ke-Tao
    Luo, Jun
    Xu, Rui
    Lin, Hua
    Zhang, Su-Yuan
    Wang, Hui-Min
    Cao, Rong
    [J]. CCS CHEMISTRY, 2019, 1 (04): : 384 - 395