All-Clear Flare Prediction Using Interval-based Time Series Classifiers

被引:11
作者
Ji, Anli [1 ]
Aydin, Berkay [1 ]
Georgoulis, Manolis K. [1 ]
Angryk, Rafal [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2020年
基金
美国国家科学基金会;
关键词
solar flare prediction; all-clear prediction; multivariate time series; time series classification;
D O I
10.1109/BigData50022.2020.9377906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An all-clear flare prediction is a type of solar flare forecasting that puts more emphasis on predicting non-flaring instances (often relatively small flares and flare quiet regions) with high precision while still maintaining valuable predictive results. While many flare prediction studies do not address this problem directly, all-clear predictions can be useful in operational context. However, in all-clear predictions, finding the right balance between avoiding false negatives (misses) and reducing the false positives (false alarms) is often challenging. Our study focuses on training and testing a set of interval-based time series named Time Series Forest (TSF). These classifiers will be used towards building an all-clear flare prediction system by utilizing multivariate time series data. Throughout this paper, we demonstrate our data collection, predictive model building and evaluation processes, and compare our time series classification models with baselines using our benchmark datasets. Our results show that time series classifiers provide better forecasting results in terms of skill scores, precision and recall metrics, and they can be further improved for more precise all-clear forecasts by tuning model hyperparameters.
引用
收藏
页码:4218 / 4225
页数:8
相关论文
共 29 条
[1]   Relationship between magnetic power spectrum and flare productivity in solar active regions [J].
Abramenko, VI .
ASTROPHYSICAL JOURNAL, 2005, 629 (02) :1141-1149
[2]  
Ahmadzadeh A, 2019, IEEE INT CONF BIG DA, P1423, DOI 10.1109/BigData47090.2019.9006505
[3]   Multivariate time series dataset for space weather data analytics [J].
Angryk, Rafal A. ;
Martens, Petrus C. ;
Aydin, Berkay ;
Kempton, Dustin ;
Mahajan, Sushant S. ;
Basodi, Sunitha ;
Ahmadzadeh, Azim ;
Cai, Xumin ;
Filali Boubrahimi, Soukaina ;
Hamdi, Shah Muhammad ;
Schuh, Michael A. ;
Georgoulis, Manolis K. .
SCIENTIFIC DATA, 2020, 7 (01)
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.7910/DVN/EBCFKM
[5]   A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP [J].
Barnes, G. ;
Leka, K. D. ;
Schrijver, C. J. ;
Colak, T. ;
Qahwaji, R. ;
Ashamari, O. W. ;
Yuan, Y. ;
Zhang, J. ;
McAteer, R. T. J. ;
Bloomfield, D. S. ;
Higgins, P. A. ;
Gallagher, P. T. ;
Falconer, D. A. ;
Georgoulis, M. K. ;
Wheatland, M. S. ;
Balch, C. ;
Dunn, T. ;
Wagner, E. L. .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[6]   A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction [J].
Benvenuto, Federico ;
Piana, Michele ;
Campi, Cristina ;
Massone, Anna Maria .
ASTROPHYSICAL JOURNAL, 2018, 853 (01)
[7]   PREDICTING CORONAL MASS EJECTIONS USING MACHINE LEARNING METHODS [J].
Bobra, M. G. ;
Ilonidis, S. .
ASTROPHYSICAL JOURNAL, 2016, 821 (02)
[8]   SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM [J].
Bobra, M. G. ;
Couvidat, S. .
ASTROPHYSICAL JOURNAL, 2015, 798 (02)
[9]   The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches [J].
Bobra, M. G. ;
Sun, X. ;
Hoeksema, J. T. ;
Turmon, M. ;
Liu, Y. ;
Hayashi, K. ;
Barnes, G. ;
Leka, K. D. .
SOLAR PHYSICS, 2014, 289 (09) :3549-3578
[10]   PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION [J].
Boucheron, Laura E. ;
Al-Ghraibah, Amani ;
McAteer, R. T. James .
ASTROPHYSICAL JOURNAL, 2015, 812 (01)