Genetic and molecular analysis of growth responses to environmental factors using Arabidopsis thaliana natural variation

被引:0
|
作者
Reymond, M. [1 ]
Pieper, B. [1 ]
Barbier, H. [1 ]
Ihnatowicz, A. [1 ]
El-Lithy, M.
Vreugdenhil, D.
Koornneef, M. [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Carl von Linne Weg 10, D-50829 Cologne, Germany
关键词
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana natural accessions have been collected in the Northern hemisphere in a wide range of habitats, with a specific environment in each habitat, suggesting that selection for adaptation to these local environments occurred and provided genetic variation of responses to environmental factors. Plant performance traits are complex traits and are fluctuating under contrasted environmental conditions (e.g., temperature, day length, nutrient nutrition, drought). The genetic architecture of such traits and of their responses to environmental conditions could be analysed by detecting QTL (Quantitative Traits Loci). Accessions from contrasted geographical regions have been used to detect such QTL. QTL analysis and subsequent QTL cloning of genetic variation for growth and plant performance traits in Arabidopsis using Arabidopsis thaliana natural accessions are powerful tools to understand the genetic and the molecular basis of plant performance in contrasted environments. QTL analysis of growth-related traits and their response to temperature, light and nutrient starvation in hydroponic system are in progress in different populations (recombinant inbred lines, backcross inbred-line populations) Near-isogenic lines or heterogeneous inbred lines are also selected and used to confirm the effect of QTL and to isolate recombinant events in the QTL region in order to fine-map and clone the QTL. The challenge of these studies is to understand this genetic variation, which is also very relevant for plant breeding, since it involves the traits determining yield and yield stability. It is difficult to predict which processes underlie this genetic variation, but candidate processes are primary and secondary metabolism, nutrient uptake, transport processes and aspects of development etc. This implies that a thorough and broad (whole plant) approach needs to be applied to identify the nature of the observed variation. Apart from being relevant for breeding it is assumed that genetic variation for plant performances contributes to the adaptation of specific genotypes to a specific ecological system and therefore has ecological and evolutionary relevance.
引用
收藏
页码:3 / +
页数:5
相关论文
共 50 条
  • [1] The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
    Marchadier, Elodie
    Hanemian, Mathieu
    Tisne, Sebastien
    Bach, Lien
    Bazakos, Christos
    Gilbault, Elodie
    Haddadi, Parham
    Virlouvet, Laetitia
    Loudet, Olivier
    PLOS GENETICS, 2019, 15 (04):
  • [2] Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes
    Takahashi, Sho
    Monda, Keina
    Negi, Juntaro
    Konishi, Fumitaka
    Ishikawa, Shinobu
    Hashimoto-Sugimoto, Mimi
    Goto, Nobuharu
    Iba, Koh
    PLOS ONE, 2015, 10 (02):
  • [3] Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis
    Zhao, Jiayi
    Fu, Huiqi
    Wang, Zhengze
    Zhang, Min
    Liang, Yaoqiong
    Cui, Xueying
    Pan, Wenjing
    Ren, Ziming
    Wu, Zhihua
    Zhang, Yujie
    Gui, Xin
    Huo, Li
    Lei, Xiaoning
    Wang, Chong
    Schnittger, Arp
    Pawlowski, Wojciech P.
    Liu, Bing
    PLANT PHYSIOLOGY, 2025, 197 (01)
  • [4] Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions
    Zan, Yanjun
    Shen, Xia
    Forsberg, Simon K. G.
    Carlborg, Orjan
    G3-GENES GENOMES GENETICS, 2016, 6 (08): : 2319 - 2328
  • [5] Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana
    Yu, Zheng
    Haberer, Georg
    Matthes, Michaela
    Rattei, Thomas
    Mayer, Klaus F. X.
    Gierl, Alfons
    Torres-Ruiz, Ramon A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (41) : 17809 - 17814
  • [6] Marker development for the genetic study of natural variation in Arabidopsis thaliana
    Nemri, Adnane
    Neff, Michael M.
    Burrell, Michael
    Jones, Jonathan D. G.
    Studholme, David J.
    BIOINFORMATICS, 2007, 23 (22) : 3108 - 3109
  • [7] Genetic Architecture of Natural Variation of Telomere Length in Arabidopsis thaliana
    Fulcher, Nick
    Teubenbacher, Astrid
    Kerdaffrec, Envel
    Farlow, Ashley
    Nordborg, Magnus
    Riha, Karel
    GENETICS, 2015, 199 (02) : 625 - 635
  • [8] Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana
    Payne, KA
    Bowen, HC
    Hammond, JP
    Hampton, CR
    Lynn, JR
    Mead, A
    Swarup, K
    Bennett, MJ
    White, PJ
    Broadley, MR
    NEW PHYTOLOGIST, 2004, 162 (02) : 535 - 548
  • [9] The contribution of spontaneous mutation to variation in environmental responses of Arabidopsis thaliana:: Responses to light
    Kavanaugh, CM
    Shaw, RG
    EVOLUTION, 2005, 59 (02) : 266 - 275
  • [10] The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana
    Balasubramanian, Sureshkumar
    Sureshkumar, Sridevi
    Agrawal, Mitesh
    Michael, Todd P.
    Wessinger, Carrie
    Maloof, Julin N.
    Clark, Richard
    Warthmann, Norman
    Chory, Joanne
    Weigel, Detlef
    NATURE GENETICS, 2006, 38 (06) : 711 - 715