A superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem

被引:2
作者
Hernandez, Erwin [1 ]
Otarola, Enrique [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2011年 / 91卷 / 04期
关键词
Locking free scheme; Timoshenko beam; superconvergence; optimal control problem; FINITE-ELEMENT; DISCRETIZATION; APPROXIMATION; BEAM;
D O I
10.1002/zamm.201000128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze the numerical approximation of an optimal control problem of a Timoshenko beam, by considering two kinds of distributed control. The discretization of the control variables is performed by using piecewise constant functions. The states and the adjoint states are approximated by a locking free scheme of linear finite elements. An interpolation postprocessing technique is used for the approximations of the optimal solution of the continuous optimal control problem. It is proved that these approximations have superconvergence order h(2), which do not depend on the thickness of the beam. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:288 / 299
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[3]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[4]  
Bathe KJ., 2003, COMPUTATIONAL FLUID, P330
[6]  
Chen YP, 2006, INT J NUMER ANAL MOD, V3, P311
[7]   Superconvergence for Optimal Control Problems Governed by Semi-linear Elliptic Equations [J].
Chen, Yanping ;
Dai, Yongquan .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (02) :206-221
[8]   Proposal for detection of non-Markovian decay via current noise [J].
Chen, Yueh-Nan ;
Chen, Guang-Yin .
PHYSICAL REVIEW B, 2008, 77 (03)
[9]   APPROXIMATION OF A CLASS OF OPTIMAL CONTROL PROBLEMS WITH ORDER OF CONVERGENCE ESTIMATES [J].
FALK, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) :28-47
[10]  
Fuller C.C., 1997, Active control of vibration