SHIMURA AND TEICHMULLER CURVES

被引:44
|
作者
Moeller, Martin [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60325 Frankfurt, Germany
关键词
Shimura variety; square-tiled surface; Lyapunov spectrum; STABLE FAMILIES; SURFACES;
D O I
10.3934/jmd.2011.5.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify curves in the moduli space of curves M-g that are both Shimura and Teichmuller curves: for both g = 3 and g = 4 there exists precisely one such curve, for g = 2 and g >= 6 there are no such curves. We start with a Hodge-theoretic description of Shimura curves and of Teichmuller curves that reveals similarities and differences of the two classes of curves. The proof of the classification relies on the geometry of square-tiled coverings and on estimating the numerical invariants of these particular fibered surfaces. Finally, we translate our main result into a classification of Teichmuller curves with totally degenerate Lyapunov spectrum.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [21] Lattices in the cohomology of Shimura curves
    Matthew Emerton
    Toby Gee
    David Savitt
    Inventiones mathematicae, 2015, 200 : 1 - 96
  • [22] On the Hasse principle for Shimura curves
    Clark, Pete L.
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 349 - 365
  • [23] Serre weights and Shimura curves
    Newton, James
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 1471 - 1500
  • [24] CATEGORICITY OF MODULAR AND SHIMURA CURVES
    Daw, Christopher
    Harris, Adam
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (05) : 1075 - 1101
  • [25] Lattices in the cohomology of Shimura curves
    Emerton, Matthew
    Gee, Toby
    Savitt, David
    INVENTIONES MATHEMATICAE, 2015, 200 (01) : 1 - 96
  • [26] On the Hasse principle for Shimura curves
    Pete L. Clark
    Israel Journal of Mathematics, 2009, 171 : 349 - 365
  • [27] Equations of hyperelliptic Shimura curves
    Molina, Santiago
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 105 : 891 - 920
  • [28] Shimura curves in the Prym locus
    Colombo, Elisabetta
    Frediani, Paola
    Ghigif, Alessandro
    Penegini, Matteo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [29] THE POOR REDUCTION OF SHIMURA CURVES
    CARAYOL, H
    COMPOSITIO MATHEMATICA, 1986, 59 (02) : 151 - 230
  • [30] BAD REDUCTION OF SHIMURA CURVES
    CARAYOL, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (13): : 557 - 560