Hybrid Microfluidic Device for High Throughput Isolation of Cells Using Aptamer Functionalized Diatom Frustules

被引:6
作者
Mohammadi, Rashin [1 ,2 ]
Asghari, Mohammad [1 ]
Colombo, Monika [1 ]
Vaezi, Zahra [3 ]
Richards, Daniel A. [1 ]
Stavrakis, Stavros [1 ]
Naderi-Manesh, Hossein [2 ]
DeMello, Andrew [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[2] Tarbiat Modares Univ, Fac Biol Sci, Dept Nanobiotechnol Biophys, Tehran 14115154, Iran
[3] Tarbiat Modares Univ, Fac Interdisciplinary Sci & Technol, Dept Bioact Cpds, Tehran 14115154, Iran
基金
欧盟地平线“2020”;
关键词
Circulating tumor cells; Diagnostics; Microfluidic platform; CIRCULATING TUMOR-CELLS; CANCER-CELLS; VISCOELASTIC MICROFLUIDICS; SEPARATION; DIELECTROPHORESIS; NANOSTRUCTURES; ENRICHMENT; BIOSILICA; ARRAY;
D O I
10.2533/chimia.2022.661
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Circulating tumor cells (CTCs), secreted from primary and metastatic malignancies, hold a wealth of es-sential diagnostic and prognostic data for multiple cancers. Significantly, the information contained within these cells may hold the key to understanding cancer metastasis, both individually and fundamentally. Accordingly, developing ways to identify, isolate and interrogate CTCs plays an essential role in modern cancer research. Unfortunately, CTCs are typically present in the blood in vanishingly low titers and mixed with other blood com-ponents, making their isolation and analysis extremely challenging. Herein, we report the design, fabrication and optimization of a microfluidic device capable of automatically isolating CTCs from whole blood. This is achieved in two steps, via the passive viscoelastic separation of CTCs and white blood cells (WBCs) from red blood cells (RBCs), and subsequent active magnetophoretic separation of CTCs from WBCs. We detail the specific geom-etries required to balance the elastic and inertial forces required for successful passive separation of RBCs, and the use of computational fluid dynamics (CFD) to optimize active magnetophoretic separation. We subsequently describe the use of magnetic biosilica frustules, extracted from Chaetoceros sp. diatoms, to fluorescently tag CTCs and facilitate magnetic isolation. Finally, we use our microfluidic platform to separate HepG2-derived CTCs from whole blood, demonstrating exceptional CTC recovery (94.6%) and purity (89.7%)
引用
收藏
页码:661 / 668
页数:8
相关论文
共 52 条
[1]   Microfluidic particle separator utilizing sheathless elasto-inertial focusing [J].
Ahn, Sung Won ;
Lee, Sung Sik ;
Lee, Seong Jae ;
Kim, Ju Min .
CHEMICAL ENGINEERING SCIENCE, 2015, 126 :237-243
[2]   Microfluidics Based Magnetophoresis: A Review [J].
Alnaimat, Fadi ;
Dagher, Sawsan ;
Mathew, Bobby ;
Hilal-Alnqbi, Ali ;
Khashan, Saud .
CHEMICAL RECORD, 2018, 18 (11) :1596-1612
[3]   Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species [J].
Asghari, Mohammad ;
Cao, Xiaobao ;
Mateescu, Bogdan ;
van Leeuwen, Daniel ;
Aslan, Mahmut Kamil ;
Stavrakis, Stavros ;
deMello, Andrew J. .
ACS NANO, 2020, 14 (01) :422-433
[4]   Microfluidic Isolation of Circulating Tumor Cell Clusters by Size and Asymmetry [J].
Au, Sam H. ;
Edd, Jon ;
Stoddard, Amy E. ;
Wong, Keith H. K. ;
Fachin, Fabio ;
Maheswaran, Shyamala ;
Haber, Daniel A. ;
Stott, Shannon L. ;
Kapur, Ravi ;
Toner, Mehmet .
SCIENTIFIC REPORTS, 2017, 7
[5]   Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis [J].
Augustsson, Per ;
Magnusson, Cecilia ;
Nordin, Maria ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2012, 84 (18) :7954-7962
[6]   Technologies for circulating tumor cell separation from whole blood [J].
Banko, Petra ;
Lee, Sun Young ;
Nagygyorgy, Viola ;
Zrinyi, Miklos ;
Chae, Chang Hoon ;
Cho, Dong Hyu ;
Telekes, Andras .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (1)
[7]   Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression [J].
Chu, Po-Yu ;
Liao, Chia-Jung ;
Hsieh, Chia-Hsun ;
Wang, Hung-Ming ;
Chou, Wen-Pin ;
Chen, Ping-Hei ;
Wu, Min-Hsien .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 283 :621-631
[8]   Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter [J].
De Stefano, L. ;
Lamberti, A. ;
Rotiroti, L. ;
De Stefano, M. .
ACTA BIOMATERIALIA, 2008, 4 (01) :126-130
[9]   Nanostructures in diatom frustules: Functional morphology of valvocopulae in cocconeidacean monoraphid taxa [J].
De Stefano, M ;
De Stefano, L .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (01) :15-24
[10]   Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems [J].
Delasoie, Joachim ;
Zobi, Fabio .
PHARMACEUTICS, 2019, 11 (10)