SCALE AND ROTATION INVARIANT FEATURE-BASED OBJECT TRACKING VIA MODIFIED ON-LINE BOOSTING

被引:9
作者
Miao, Quan [1 ]
Wang, Guijin [1 ]
Lin, Xinggang [1 ]
Wang, Yongming [2 ]
Shi, Chenbo [1 ]
Liao, Chao [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Adv Informat Technol Inst, Beijing, Peoples R China
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
object tracking; keypoint matching; online boosting; classifier updating;
D O I
10.1109/ICIP.2010.5650967
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object tracking is a major technique in image processing and computer vision. In this paper, we propose a new robust feature-based tracking scheme by employing adaptive classifiers to match the detected keypoints in consecutive frames. The novelty of this paper is that the design of online boosting is combined with the invariance of local features so that the classifier-based descriptions are formed in association with the scale and rotation information. Furthermore, we introduce a sample weighting mechanism in the on-line classifier updating, for the subsequent tracking. Experimental results demonstrate the robustness and accuracy of our proposed technique.
引用
收藏
页码:3929 / 3932
页数:4
相关论文
共 10 条
[1]  
[Anonymous], P EUR C COMP VIS
[2]  
[Anonymous], 2006, 2006 IEEE COMP SOC C
[3]  
Avidan S, 2005, PROC CVPR IEEE, P494
[4]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[5]   Online selection of discriminative tracking features [J].
Collins, RT ;
Liu, YX ;
Leordeanu, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) :1631-1643
[6]  
Grabner M., 2007, P IEEE C COMP VIS PA
[7]  
Hartley R.I., 2004, Multiple View Geometry in Computer Vision, Vsecond, DOI [DOI 10.1017/CBO9780511811685, 10.1016/S0143-8166(01)00145-2]
[8]  
Lepetit V, 2005, PROC CVPR IEEE, P775
[9]   A comprehensive review of current local features for computer vision [J].
Li, Jing ;
Allinson, Nigel M. .
NEUROCOMPUTING, 2008, 71 (10-12) :1771-1787
[10]   Rapid object detection using a boosted cascade of simple features [J].
Viola, P ;
Jones, M .
2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, :511-518