Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models

被引:21
|
作者
Gupta, Rajit [1 ]
Sharma, Laxmi Kant [1 ]
机构
[1] Cent Univ Rajasthan, Sch Earth Sci, Dept Environm Sci, Remote Sensing & GIS Lab, NH-8, Ajmer 305817, Rajasthan, India
关键词
GEDI; Optical; SAR; Canopy height; Machine learning; Tropical mixed forests; VEGETATION INDEX; POLARIMETRIC SAR; RADAR; TM;
D O I
10.1016/j.rsase.2022.100817
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial mapping of forests canopy height (Hcanopy) provides an opportunity to assess above-ground biomass, net primary productivity, carbon dioxide (CO2) sequestration, biodiversity conservation and forest fire risks. This study incorporated a continuous coverage of multi-spectral optical and synthetic aperture radar (SAR) along with sparsely global ecosystem dynamics investigation (GEDI) spaceborne Light Detection and Ranging (LiDAR) data in the machine learning (ML) models for mapping Hcanopy in the mixed tropical forests of Shoolpaneshwar wildlife sanctuary (SWLS), Gujarat, India. We trained seven ML models, including quantile random forest (QRF), support vector machine (SVM), Bayesian regularization for feed-forward neural networks (BRNN), conditional inference random forest (Cforest), Extreme gradient boosting (Xgbtree), multivariate adaptive regression splines (MARS), and k-nearest neighbors (KNN) using GEDI_02A extracted Hcanopy as training data. We used predictors which were extracted from LiDAR (GEDI metrics), multispectral optical (Landsat-8, Sentinel-2), and SAR (ALOS-2/PALSAR-2, Sentinel-1). A 10-fold cross-validation (CV) resampling was used to avoid overfitting or underfitting. The comparison of the models performances shows that the BRNN model has the highest satisfactory accuracy metrics, such as root mean square error (RMSE) of 4.686 m, R-squared (R-2) of 0.49 and mean absolute error (MAE) of 3.66 m. Low training samples of tall canopies (> 25 m), presence of mixed vegetation, geometric and structural variability and sloppy terrain of SWLS possibly restricted models from performing well. Field validation shows an R(2 )of 0.55, satisfactory for mixed tropical forests using spaceborne LiDAR. The present work provides insights into using spaceborne LiDAR GEDI data with optical and SAR data for Hcanopy mapping through ML models, which help to manage SWLS and further implications of forest Hcanopy mapping over large spatial scales.
引用
收藏
页数:20
相关论文
共 44 条
  • [1] Analyzing Canopy Height Patterns and Environmental Landscape Drivers in Tropical Forests Using NASA's GEDI Spaceborne LiDAR
    Adrah, Esmaeel
    Wan Mohd Jaafar, Wan Shafrina
    Omar, Hamdan
    Bajaj, Shaurya
    Leite, Rodrigo Vieira
    Mazlan, Siti Munirah
    Silva, Carlos Alberto
    Chel Gee Ooi, Maggie
    Mohd Said, Mohd Nizam
    Abdul Maulud, Khairul Nizam
    Cardil, Adrian
    Mohan, Midhun
    REMOTE SENSING, 2022, 14 (13)
  • [2] Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
    Pourshamsi, Maryam
    Xia, Junshi
    Yokoya, Naoto
    Garcia, Mariano
    Lavalle, Marco
    Pottier, Eric
    Balzter, Heiko
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 79 - 94
  • [3] Modeling Canopy Height of Forest-Savanna Mosaics in Togo Using ICESat-2 and GEDI Spaceborne LiDAR and Multisource Satellite Data
    Kombate, Arifou
    Kamga, Guy Armel Fotso
    Goita, Kalifa
    REMOTE SENSING, 2025, 17 (01)
  • [4] Upscaling Forest Canopy Height Estimation Using Waveform-Calibrated GEDI Spaceborne LiDAR and Sentinel-2 Data
    Wang, Junjie
    Shen, Xin
    Cao, Lin
    REMOTE SENSING, 2024, 16 (12)
  • [5] Canopy Height Mapping by Sentinel 1 and 2 Satellite Images, Airborne LiDAR Data, and Machine Learning
    de Almeida, Catherine Torres
    Gerente, Jessica
    dos Prazeres Campos, Jamerson Rodrigo
    Gomes Junior, Francisco Caruso
    Providelo, Lucas Antonio
    Marchiori, Guilherme
    Chen, Xinjian
    REMOTE SENSING, 2022, 14 (16)
  • [6] MACHINE-LEARNING FUSION OF POLSAR AND LIDAR DATA FOR TROPICAL FOREST CANOPY HEIGHT ESTIMATION
    Pourshamsi, Maryam
    Garcia, Mariano
    Lavalle, Marco
    Pottier, Eric
    Balzter, Heiko
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8108 - 8111
  • [7] Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery
    Schlickmann, Monique Bohora
    Bueno, Inacio Thomaz
    Valle, Denis
    Hammond, William M.
    Prichard, Susan J.
    Hudak, Andrew T.
    Klauberg, Carine
    Karasinski, Mauro Alessandro
    Brock, Kody Melissa
    Rocha, Kleydson Diego
    Xia, Jinyi
    Vieira Leite, Rodrigo
    Higuchi, Pedro
    da Silva, Ana Carolina
    Maximo da Silva, Gabriel
    Cova, Gina R.
    Silva, Carlos Alberto
    REMOTE SENSING, 2025, 17 (02)
  • [8] MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS
    Chen, Richard H.
    Pinto, Naiara
    Duan, Xueyang
    Tabatabaeenejad, Alireza
    Moghaddam, Mahta
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4136 - 4139
  • [9] Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India
    Ghosh, Sujit M.
    Behera, Mukunda D.
    Kumar, Subham
    Das, Pulakesh
    Prakash, Ambadipudi J.
    Bhaskaran, Prasad K.
    Roy, Parth S.
    Barik, Saroj K.
    Jeganathan, Chockalingam
    Srivastava, Prashant K.
    Behera, Soumit K.
    REMOTE SENSING, 2022, 14 (23)
  • [10] Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests using Airborne LiDAR Data
    Suraj Reddy Rodda
    Rama Rao Nidamanuri
    Rakesh Fararoda
    T. Mayamanikandan
    Gopalakrishnan Rajashekar
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 841 - 856