Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models

被引:26
作者
Gupta, Rajit [1 ]
Sharma, Laxmi Kant [1 ]
机构
[1] Cent Univ Rajasthan, Sch Earth Sci, Dept Environm Sci, Remote Sensing & GIS Lab, NH-8, Ajmer 305817, Rajasthan, India
关键词
GEDI; Optical; SAR; Canopy height; Machine learning; Tropical mixed forests; VEGETATION INDEX; POLARIMETRIC SAR; RADAR; TM;
D O I
10.1016/j.rsase.2022.100817
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial mapping of forests canopy height (Hcanopy) provides an opportunity to assess above-ground biomass, net primary productivity, carbon dioxide (CO2) sequestration, biodiversity conservation and forest fire risks. This study incorporated a continuous coverage of multi-spectral optical and synthetic aperture radar (SAR) along with sparsely global ecosystem dynamics investigation (GEDI) spaceborne Light Detection and Ranging (LiDAR) data in the machine learning (ML) models for mapping Hcanopy in the mixed tropical forests of Shoolpaneshwar wildlife sanctuary (SWLS), Gujarat, India. We trained seven ML models, including quantile random forest (QRF), support vector machine (SVM), Bayesian regularization for feed-forward neural networks (BRNN), conditional inference random forest (Cforest), Extreme gradient boosting (Xgbtree), multivariate adaptive regression splines (MARS), and k-nearest neighbors (KNN) using GEDI_02A extracted Hcanopy as training data. We used predictors which were extracted from LiDAR (GEDI metrics), multispectral optical (Landsat-8, Sentinel-2), and SAR (ALOS-2/PALSAR-2, Sentinel-1). A 10-fold cross-validation (CV) resampling was used to avoid overfitting or underfitting. The comparison of the models performances shows that the BRNN model has the highest satisfactory accuracy metrics, such as root mean square error (RMSE) of 4.686 m, R-squared (R-2) of 0.49 and mean absolute error (MAE) of 3.66 m. Low training samples of tall canopies (> 25 m), presence of mixed vegetation, geometric and structural variability and sloppy terrain of SWLS possibly restricted models from performing well. Field validation shows an R(2 )of 0.55, satisfactory for mixed tropical forests using spaceborne LiDAR. The present work provides insights into using spaceborne LiDAR GEDI data with optical and SAR data for Hcanopy mapping through ML models, which help to manage SWLS and further implications of forest Hcanopy mapping over large spatial scales.
引用
收藏
页数:20
相关论文
共 71 条
[1]   Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 [J].
Abatzoglou, John T. ;
Dobrowski, Solomon Z. ;
Parks, Sean A. ;
Hegewisch, Katherine C. .
SCIENTIFIC DATA, 2018, 5
[2]  
Bannari A., 1995, Remote sensing reviews, V13, P95, DOI [10.1080/02757259509532298, DOI 10.1080/02757259509532298]
[3]  
Champion SH, 1968, REVISED SURVEY FORES
[4]  
Chen Jing M, 1996, Canadian Journal of Remote Sensing, V22, P229, DOI 10.1080/07038992.1996.10855178
[5]   Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China [J].
Chen, Lin ;
Ren, Chunying ;
Zhang, Bai ;
Wang, Zongming ;
Liu, Mingyue ;
Man, Weidong ;
Liu, Jiafu .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 100
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data [J].
Chen, Wei ;
Zheng, Qihui ;
Xiang, Haibing ;
Chen, Xu ;
Sakai, Tetsuro .
REMOTE SENSING, 2021, 13 (02) :1-21
[8]  
Dubayah R., 2020, GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001
[9]   The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography [J].
Dubayah, Ralph ;
Blair, James Bryan ;
Goetz, Scott ;
Fatoyinbo, Lola ;
Hansen, Matthew ;
Healey, Sean ;
Hofton, Michelle ;
Hurtt, George ;
Kellner, James ;
Luthcke, Scott ;
Armston, John ;
Tang, Hao ;
Duncanson, Laura ;
Hancock, Steven ;
Jantz, Patrick ;
Marselis, Suzanne ;
Patterson, Paul L. ;
Qi, Wenlu ;
Silva, Carlos .
SCIENCE OF REMOTE SENSING, 2020, 1
[10]  
earthdata nasa, AB US