Numerical solution of flow problems by stabilized finite element method and verification of its accuracy using a posteriori error estimates

被引:1
|
作者
Burda, P.
Novotny, J.
Sistek, J.
机构
[1] Czech Tech Univ Prague, Dept Math, CZ-12135 Prague 2, Czech Republic
[2] Acad Sci Czech Republic, Inst Thermomech, CZ-18200 Prague, Czech Republic
关键词
incompressible fluid; stabilization; GLS; semiGLS; A posteriori error estimates;
D O I
10.1016/j.matcom.2007.01.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
2D flow of incompressible viscous fluid with higher Reynolds number is studied. Galerkin least squares technique of stabilization of the finite element method is investigated and its modification is described. A number of numerical results is presented. Properties of stabilization are discussed. Most important part is the study of the accuracy of the stabilized solution by means of a posteriori error estimates. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [21] A Posteriori Error Estimates of Semidiscrete Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Chen, Yanping
    Lin, Zhuoqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 85 - 108
  • [22] A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems
    Chunjia Bi
    Cheng Wang
    Yanping Lin
    Journal of Scientific Computing, 2018, 74 : 23 - 48
  • [23] A posteriori error estimates for fourth order hyperbolic control problems by mixed finite element methods
    Chunjuan Hou
    Zhanwei Guo
    Lianhong Guo
    Boundary Value Problems, 2019
  • [24] A Posteriori Error Estimates of Edge Residual type of Finite Element Method for Nonmonotone Quasi-Linear Elliptic Problems
    Guo, Liming
    Huang, Ziping
    Wang, Cheng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (03) : 813 - 837
  • [25] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [26] A posteriori error analysis of an augmented mixed finite element method for Darcy flow
    Barrios, Tomas P.
    Manuel Cascon, J.
    Gonzalez, Maria
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 909 - 922
  • [27] A posteriori error estimates for nonlinear problems.: Lr(0,T;Lρ(Ω))-error estimates for finite element discretizations of parabolic equations
    Verfurth, R
    MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1335 - 1360
  • [28] A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay
    Wang, Wansheng
    Yi, Lijun
    Xiao, Aiguo
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [29] A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay
    Wansheng Wang
    Lijun Yi
    Aiguo Xiao
    Journal of Scientific Computing, 2020, 84
  • [30] A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems
    Yang, Yidu
    Sun, Lingling
    Bi, Hai
    Li, Hao
    APPLIED NUMERICAL MATHEMATICS, 2014, 82 : 51 - 67