Bioderived Calcite as Electrolyte for Solid Oxide Fuel Cells: A Strategy toward Utilization of Waste Shells

被引:21
作者
Cai, Yixiao [1 ,2 ]
Xia, Chen [3 ]
Wang, Baoyuan [2 ]
Zhang, Wei [2 ]
Wang, Yi [4 ]
Zhu, Bin [2 ,3 ]
机构
[1] Natl Univ Singapore, NUS Environm Res Inst, 1 Create Way, Singapore 138602, Singapore
[2] Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China
[3] Royal Inst Technol KTH, Dept Energy Technol, SE-10044 Stockholm, Sweden
[4] Max Planck Inst Solid State Res MPI FKF, Stuttgart Ctr Electron Microscopy StEM, Heisenbergstr 1, D-70569 Stuttgart, Germany
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 11期
关键词
Waste shells; Fuel cells; Waste-to-energy conversion; Composite electrolyte; INTERMEDIATE TEMPERATURE; COMPOSITE ELECTROLYTES; PERFORMANCE; LAYER; EXOSKELETON; GENERATION; PEROVSKITE; MEMBRANE; HEMATITE; MATRIX;
D O I
10.1021/acssuschemeng.7b02406
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The excessive consumption of synthesized materials and enhanced environmental protection protocols necessitate the exploitation of desirable functionalities to handle our solid waste. Through a simple calcination and composite strategy, this work envisages the first application of biocalcite derived from the waste of crayfish shells as an electrolyte for solid oxide fuel cells (SOFCs), which demonstrates encouraging performances within a low temperature range of 450-550 degrees C. The single cell device, assembled from calcined waste shells at 600 degrees C (CWS600), enables a peak power density of 166 mW cm(-2) at 550 degrees C, and further renders 330 and 256 mW cm(-2) after compositing with perovskite La0.6Sr0.4Co0.8Fe0.2O3-delta (LSCF) and layer-structured LiNi0.8Co0.15Al0.05O2 (LNCA), respectively. Notably, an oxygen-ion blocking fuel cell is used to confirm the proton-conducting property of CWS600 associated electrolytes. The practical potential of the prepared fuel cells is also validated when the cell voltage of the cell is kept constant value over 10 h during a galvanostatic operation using a CWS600-LSCF electrolyte. These interesting findings may increase the likelihood of transforming our solid municipal waste into electrochemical energy devices, and also importantly, provide an underlying approach for discovering novel electrolytes for low-temperature SOFCs.
引用
收藏
页码:10387 / 10395
页数:9
相关论文
共 52 条
  • [1] Extraction and characterization of chitin and chitosan from local sources
    Abdou, Entsar S.
    Nagy, Khaled S. A.
    Elsabee, Maher Z.
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (05) : 1359 - 1367
  • [2] Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent
    Ang, Ran
    Khan, Atta Ullah
    Tsujii, Naohito
    Takai, Ken
    Nakamura, Ryuhei
    Mori, Takao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (44) : 12909 - 12913
  • [3] Addition effects of erbia-stabilized bismuth oxide on ceria-based carbonate composite electrolytes for intermediate temperature--solid oxide fuel cells
    Baek, Seung-Seok
    Lee, Naesung
    Kim, Byung-Kook
    Chang, Haejung
    Song, Sun-Ju
    Park, Jun-Young
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (22) : 16823 - 16834
  • [4] The composition of the exoskeleton of two crustacea:: The American lobster Homarus americanus and the edible crab Cancer pagurus
    Bobelmann, F.
    Romano, P.
    Fabritius, H.
    Raabe, D.
    Epple, M.
    [J]. THERMOCHIMICA ACTA, 2007, 463 (1-2) : 65 - 68
  • [5] Intermediate temperature solid oxide fuel cells
    Brett, Daniel J. L.
    Atkinson, Alan
    Brandon, Nigel P.
    Skinner, Stephen J.
    [J]. CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) : 1568 - 1578
  • [6] Shell Biorefinery: Dream or Reality?
    Chen, Xi
    Yang, Huiying
    Yan, Ning
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (38) : 13402 - 13421
  • [7] Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach
    de Leeuw, NH
    Parker, SC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (16): : 2914 - 2922
  • [8] Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ
    Dong, Xiao
    Tian, Li
    Li, Jiang
    Zhao, Yicheng
    Tian, Ye
    Li, Yongdan
    [J]. JOURNAL OF POWER SOURCES, 2014, 249 : 270 - 276
  • [9] Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells
    Fan, Liangdong
    Su, Pei-Chen
    [J]. JOURNAL OF POWER SOURCES, 2016, 306 : 369 - 377
  • [10] Intrinsic and extrinsic compositional effects in ceria/carbonate composite electrolytes for fuel cells
    Ferreira, Ana S. V.
    Soares, Catia M. C.
    Figueiredo, Filipe M. H. L. R.
    Marques, Fernando M. B.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (05) : 3704 - 3711