Derivative-free methods for nonlinear programming with general lower-level constraints

被引:0
|
作者
Diniz-Ehrhardt, M. A. [1 ]
Martinez, J. M. [1 ]
Pedroso, L. G. [2 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, IMECC UNICAMP, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Parana, Dept Math, BR-81531980 Curitiba, Parana, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2011年 / 30卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; Augmented Lagrangian; global convergence; optimality conditions; derivative-free optimization; constraint qualifications; LINEAR-DEPENDENCE CONDITION; PATTERN SEARCH METHODS; SIMPLE BOUNDS; OPTIMIZATION; MINIMIZATION; ALGORITHMS; OPTIMALITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martinez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows us to employ well established derivative-free subalgorithms for solving lower-level constrained subproblems. Numerical experiments are presented.
引用
收藏
页码:19 / 52
页数:34
相关论文
共 50 条
  • [1] ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS
    Andreani, R.
    Birgin, E. G.
    Martinez, J. M.
    Schuverdt, M. L.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) : 1286 - 1309
  • [2] Three derivative-free projection methods for nonlinear equations with convex constraints
    Sun M.
    Liu J.
    Journal of Applied Mathematics and Computing, 2015, 47 (1-2) : 265 - 276
  • [3] A PROGRESSIVE BARRIER FOR DERIVATIVE-FREE NONLINEAR PROGRAMMING
    Audet, Charles
    Dennis, J. E., Jr.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 445 - 472
  • [4] A family of derivative-free methods for nonlinear equations
    Haijun Wang
    Subei Li
    Revista Matemática Complutense, 2011, 24 : 375 - 389
  • [5] Nonmonotone derivative-free methods for nonlinear equations
    Grippo, L.
    Sciandrone, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2007, 37 (03) : 297 - 328
  • [6] A family of derivative-free methods for nonlinear equations
    Wang, Haijun
    Li, Subei
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (02): : 375 - 389
  • [7] Nonmonotone derivative-free methods for nonlinear equations
    L. Grippo
    M. Sciandrone
    Computational Optimization and Applications, 2007, 37 : 297 - 328
  • [8] An inexact restoration derivative-free filter method for nonlinear programming
    Echebest, N.
    Schuverdt, M. L.
    Vignau, R. P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 693 - 718
  • [9] An inexact restoration derivative-free filter method for nonlinear programming
    N. Echebest
    M. L. Schuverdt
    R. P. Vignau
    Computational and Applied Mathematics, 2017, 36 : 693 - 718
  • [10] A projected derivative-free algorithm for nonlinear equations with convex constraints
    La Cruz, William
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 24 - 41