Proximal point algorithm for infinite pseudo-monotone bifunctions

被引:20
作者
Khatibzadeh, Hadi [1 ]
Mohebbi, Vahid [1 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan, Iran
关键词
Equilibrium problem; pseudo-monotone bifunction; proximal point algorithm; weak convergence; strong convergence; Halpern's method; ITERATIVE ALGORITHMS; STRONG-CONVERGENCE;
D O I
10.1080/02331934.2016.1153639
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, first we study the weak convergence of the proximal point algorithm for an infinite family of equilibrium problems of pseudo-monotone type in Hilbert spaces. Then with additional conditions on the bifunctions, we prove the strong convergence for the family to a common equilibrium point. We also study a regularization of Halpern type and prove the strong convergence of the generated sequence to an equilibrium point of the family of infinite pseudo-monotone bifunctions without any additional assumptions on the bifunctions. A concrete example of a family of pseudo-monotone bifunctions is also presented.
引用
收藏
页码:1629 / 1639
页数:11
相关论文
共 19 条
[1]  
Blum E., 1994, Math. student, V63, P123
[2]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[3]  
Brezis H., 1972, Boll. Un. Mat. Ital., V6, P293
[4]  
Fan K., 1972, A minimax inequality and applications, inequalities III, P103
[5]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[6]   On certain conditions for the existence of solutions of equilibrium problems [J].
Iusem, Alfredo N. ;
Kassay, Gabor ;
Sosa, Wilfredo .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :259-273
[7]   On the proximal point method for equilibrium problems in Hilbert spaces [J].
Iusem, Alfredo N. ;
Sosa, Wilfredo .
OPTIMIZATION, 2010, 59 (08) :1259-1274
[8]   Iterative algorithms for equilibrium problems [J].
Iusem, AN ;
Sosa, W .
OPTIMIZATION, 2003, 52 (03) :301-316
[9]   Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems [J].
Khatibzadeh, Hadi ;
Mohebbi, Vahid ;
Ranjbar, Sajad .
OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (06) :1146-1163
[10]   On the Strong Convergence of Halpern Type Proximal Point Algorithm [J].
Khatibzadeh, Hadi ;
Ranjbar, Sajad .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) :385-396