On the tau function for the Schlesinger equation of isomonodromic deformations

被引:13
|
作者
Bolibrukh, AA [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
关键词
Schlesinger equation; tau function; isomonodromic family; movable singularities of the Schlesinger equation; Miwa theorem;
D O I
10.1023/A:1025048023068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The tau function for the Schlesinger equation of isomonodroinic deformations is represented as the result of successively applied elementary gauge transformations; this, in particular, suggests a simple proof for the Miwa theorem about the tau function.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [31] Isomonodromic deformations of logarithmic connections and stability
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    MATHEMATISCHE ANNALEN, 2016, 366 (1-2) : 121 - 140
  • [32] Isomonodromic deformations of Heun and Painleve equations
    Slavyanov, SY
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 123 (03) : 744 - 753
  • [33] Quantum Spectral Problems and Isomonodromic Deformations
    Bershtein, Mikhail
    Gavrylenko, Pavlo
    Grassi, Alba
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (01) : 347 - 418
  • [34] Flat Structure on the Space of Isomonodromic Deformations
    Kato, Mitsuo
    Mano, Toshiyuki
    Sekiguchi, Jiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [35] Quantum Spectral Problems and Isomonodromic Deformations
    Mikhail Bershtein
    Pavlo Gavrylenko
    Alba Grassi
    Communications in Mathematical Physics, 2022, 393 (1) : 347 - 418
  • [36] Isomonodromic Deformations: Confluence, Reduction and Quantisation
    Gaiur, Ilia
    Mazzocco, Marta
    Rubtsov, Vladimir
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) : 1385 - 1461
  • [37] Isomonodromic deformations of logarithmic connections and stability
    Indranil Biswas
    Viktoria Heu
    Jacques Hurtubise
    Mathematische Annalen, 2016, 366 : 121 - 140
  • [38] Isomonodromic deformations of Heun and Painlevé equations
    S. Yu. Slavyanov
    Theoretical and Mathematical Physics, 2000, 123 : 744 - 753
  • [39] Differential Galois Theory and Isomonodromic Deformations
    Blazquez Sanz, David
    Casale, Guy
    Diaz Arboleda, Juan Sebastian
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [40] The work of Andrey Bolibrukh on isomonodromic deformations
    Sabbah, Claude
    Differential Equations and Quantum Groups: ANDREY A. BOLIBRUKH MEMORIAL VOLUME, 2007, 9 : 9 - 25