A Resonant Gas Sensor Based on Multimode Excitation of a Buckled Microbeam

被引:39
作者
Hajjaj, Amal Z. [1 ,2 ]
Jaber, Nizar [1 ,3 ]
Alcheikh, Nouha [1 ]
Younis, Mohammad I. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA
关键词
Resonant frequency; Gas detectors; Heating systems; Thermal conductivity; Gases; Conductivity; Gas sensor; multimode; buckling point; heated microbeam; MICROMACHINED THERMOELECTRIC SENSOR; FABRICATION; MICROSENSOR; INTEGRATION;
D O I
10.1109/JSEN.2019.2950495
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a new gas sensing technique based on the simultaneous tracking of multiple modes of vibration of an electrothermally heated bridge resonator operated near the buckling point. The proposed technique maximizes the sensitivity of the sensor to changes in gases concentrations. We demonstrate a 200& x0025; frequency shift in contrast to 0.5& x0025; resistance change using the conventional resistive technique. The method also demonstrates selective identification for some gases without the need for surface functionalization of the microstructure. The proposed method is simple in principle and design and is promising for achieving practical low-cost gas sensors.
引用
收藏
页码:1778 / 1785
页数:8
相关论文
共 45 条
[1]   Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications [J].
Bargatin, I. ;
Myers, E. B. ;
Aldridge, J. S. ;
Marcoux, C. ;
Brianceau, P. ;
Duraffourg, L. ;
Colinet, E. ;
Hentz, S. ;
Andreucci, P. ;
Roukes, M. L. .
NANO LETTERS, 2012, 12 (03) :1269-1274
[2]   Multivariate curve resolution of co-eluting vapors from a gas chromatograph with microsensor array detector [J].
Bryant-Genevier, Jonathan ;
Scholten, Kee ;
Kim, Sun Kyu ;
Zellers, Edward T. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 202 :167-176
[3]   Microfabricated thermal conductivity detector for the micro-ChemLab™ [J].
Cruz, D. ;
Chang, J. P. ;
Showalter, S. K. ;
Gelbard, F. ;
Manginell, R. P. ;
Blain, M. G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (02) :414-422
[4]   Integration of a technique for the deposition of nanostructured films with MEMS-based microfabrication technologies: Application to micro gas sensors [J].
Decarli, Massimiliano ;
Lorenzelli, L. ;
Guarnieri, V. ;
Barborini, E. ;
Vinati, S. ;
Ducati, C. ;
Milani, P. .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :1247-1249
[5]   MEMS-based hydrogen gas sensors [J].
DiMeo, Frank, Jr. ;
Chen, Ing-Shin ;
Chen, Philip ;
Neuner, Jeffrey ;
Roerhl, Andreas ;
Welch, James .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (01) :10-16
[6]   Graphene Squeeze-Film Pressure Sensors [J].
Dolleman, Robin J. ;
Davidovikj, Dejan ;
Cartamil-Bueno, Santiago J. ;
van der Zant, Herre S. J. ;
Steeneken, Peter G. .
NANO LETTERS, 2016, 16 (01) :568-571
[7]   Ultrasensitive nanoelectromechanical mass detection [J].
Ekinci, KL ;
Huang, XMH ;
Roukes, ML .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4469-4471
[8]   Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications [J].
Elmi, I. ;
Zampolli, S. ;
Cozzani, E. ;
Mancarella, F. ;
Cardinali, G. C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 135 (01) :342-351
[9]  
Fischer T, 2009, NAT NANOTECHNOL, V4, P162, DOI [10.1038/NNANO.2008.393, 10.1038/nnano.2008.393]
[10]   Monolithic MEMS quadrupole mass spectrometers by deep silicon etching [J].
Geear, M ;
Syms, RRA ;
Wright, S ;
Holmes, AS .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (05) :1156-1166