On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩

被引:7
作者
Cao, Yuan [1 ]
Cao, Yonglin [2 ]
Gao, Jian [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Shandong Univ, Sch Sci, Zibo 255091, Shandong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
constacyclic code; dual code; self-dual code; finite chain ring; SELF-DUAL CODES; CYCLIC CODES;
D O I
10.1587/transfun.E99.A.1438
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Let F-q be a finite field of cardinality q, R = F-q[u]/< u(4)> = F-q + uF(q) + u(2)F(q) + u(3)F(q) (u(4) = 0) which is a finite chain ring, and n be a positive integer satisfying gcd(q, n) = 1. For any delta, alpha is an element of F-q(x), an explicit representation for all distinct (delta + alpha u(2))-constacyclic codes over R of length n is given, and the dual code for each of these codes is determined. For the case q = 2(m) and delta = 1, all self-dual (1 + alpha u(2))-constacyclic codes over R of odd length n are provided.
引用
收藏
页码:1438 / 1445
页数:8
相关论文
共 14 条
[1]   Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2 [J].
Abualrub, Taher ;
Siap, Irfan .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) :273-287
[2]   Cyclic codes over Z2 + uZ2 + u2Z2 + ... + uk-1Z2 [J].
Al-Ashker, Mohammed ;
Hamoudeh, Mohammed .
TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) :737-749
[3]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[4]   Repeated root cyclic Fq-linear codes over Fql [J].
Cao, Yonglin ;
Gao, Yun .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 :202-227
[5]   On constacyclic codes over finite chain rings [J].
Cao, Yonglin .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :124-135
[6]   Constacyclic codes of length ps over Fpm + uFpm [J].
Dinh, Hai Q. .
JOURNAL OF ALGEBRA, 2010, 324 (05) :940-950
[7]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[8]   Self-dual codes over commutative Frobenius rings [J].
Dougherty, Steven T. ;
Kim, Jon-Lark ;
Kulosman, Hamid ;
Liu, Hongwei .
FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) :14-26
[9]  
Grassl M., 2015, BOUNDS LINEAR CODES
[10]   Cyclic codes over R = Fp + uFp + ... + uk-1Fp with length psn [J].
Han, Mu ;
Ye, Youpei ;
Zhu, Shixin ;
Xu, Chungen ;
Dou, Bennian .
INFORMATION SCIENCES, 2011, 181 (04) :926-934