The rogue wave of the nonlinear Schrodinger equation with self-consistent sources

被引:5
作者
Huang, Yehui [1 ]
Jing, Hongqing [1 ]
Lin, Runliang [2 ]
Yao, Yuqin [3 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 30期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Generalized Darboux transformation; rogue wave; breather; BREATHERS;
D O I
10.1142/S0217984918503670
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we study the nonlinear Schrodinger equation with self-consistent sources, and obtain the rogue wave solution, the breather solution and their interactions by the generalized Darboux transformation. The dynamics of the rogue wave solution, the breather solution and their interactions are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
[41]   General rogue wave solutions under SU(2) transformation in the vector Chen-Lee-Liu nonlinear Schrodinger equation [J].
Pan, Changchang ;
Bu, Lili ;
Chen, Shihua ;
Yang, Wen-Xing ;
Mihalache, Dumitru ;
Grelu, Philippe ;
Baronio, Fabio .
PHYSICA D-NONLINEAR PHENOMENA, 2022, 434
[42]   Characteristics of rogue waves on a soliton background in a coupled nonlinear Schrodinger equation [J].
Wang, Xiu-Bin ;
Han, Bo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) :2586-2596
[43]   Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation [J].
Wang Xiao-Li ;
Zhang Wei-Guo ;
Zhai Bao-Guo ;
Zhang Hai-Qiang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) :531-538
[44]   Breather and rogue wave solutions for the (2+1)-dimensional nonlinear Schrodinger-Maxwell-Bloch equation [J].
Jia, Rong-Rong ;
Guo, Rui .
APPLIED MATHEMATICS LETTERS, 2019, 93 :117-123
[45]   Rogue-wave solutions of a higher-order nonlinear Schrodinger equation for inhomogeneous Heisenberg ferromagnetic system [J].
Jia, H. X. ;
Ma, J. Y. ;
Liu, Y. J. ;
Liu, X. F. .
INDIAN JOURNAL OF PHYSICS, 2015, 89 (03) :281-287
[46]   ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS [J].
Li, Zaidong ;
Wei, Hongchen ;
He, Pengbin .
ROMANIAN REPORTS IN PHYSICS, 2019, 71 (04)
[47]   Breathers, rogue waves and breather-rogue waves on a periodic background for the modified nonlinear Schrodinger equation [J].
Wu, Qing-Lin ;
Zhang, Hai-Qiang .
WAVE MOTION, 2022, 110
[48]   Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation [J].
Liu, Xiaotong ;
Yong, Xuelin ;
Huang, Yehui ;
Yu, Rui ;
Gao, Jianwei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) :257-266
[49]   Characteristics of Rogue Waves on a Soliton Background in the General Coupled Nonlinear Schrodinger Equation [J].
Wang, Xiu-Bin ;
Han, Bo .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (02) :152-160
[50]   Rogue wave solutions over double-periodic wave background of a fifth-order nonlinear Schrodinger equation with quintic terms [J].
Sinthuja, N. ;
Senthilvelan, M. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (06)