The rogue wave of the nonlinear Schrodinger equation with self-consistent sources

被引:5
作者
Huang, Yehui [1 ]
Jing, Hongqing [1 ]
Lin, Runliang [2 ]
Yao, Yuqin [3 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 30期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Generalized Darboux transformation; rogue wave; breather; BREATHERS;
D O I
10.1142/S0217984918503670
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we study the nonlinear Schrodinger equation with self-consistent sources, and obtain the rogue wave solution, the breather solution and their interactions by the generalized Darboux transformation. The dynamics of the rogue wave solution, the breather solution and their interactions are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Nonautonomous rogue wave solutions and numerical simulations for a three-dimensional nonlinear Schrodinger equation [J].
Yu, Fajun .
NONLINEAR DYNAMICS, 2016, 85 (03) :1929-1938
[32]   Rogue wave solutions for the generalized fifth-order nonlinear Schrodinger equation on the periodic background [J].
Wang, Zijia ;
Zhaqilao .
WAVE MOTION, 2022, 108
[33]   Solitons and rogue wave solutions of focusing and defocusing space shifted nonlocal nonlinear Schrodinger equation [J].
Yang, Jun ;
Song, Hai-Fang ;
Fang, Miao-Shuang ;
Ma, Li-Yuan .
NONLINEAR DYNAMICS, 2022, 107 (04) :3767-3777
[34]   Kadomtsev-Petviashvili equation with self-consistent sources: breathers, lumps and their interactions [J].
Sun, Yan ;
Liu, Lei .
NONLINEAR DYNAMICS, 2024, 112 (19) :17363-17388
[35]   Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation [J].
Bertola, Marco ;
El, Gennady A. ;
Tovbis, Alexander .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194)
[36]   Breather and rogue wave solutions for a nonlinear Schrodinger-type system in plasmas [J].
Meng, Gao-Qing ;
Qin, Jin-Lei ;
Yu, Guo-Liang .
NONLINEAR DYNAMICS, 2015, 81 (1-2) :739-751
[37]   Nonlinear Dynamics of Rogue Waves in a Fifth-Order Nonlinear Schrodinger Equation [J].
Song, Ni ;
Xue, Hui ;
Zhao, Xiaoying .
IEEE ACCESS, 2020, 8 :9610-9618
[38]   STUDY ON BREATHER-TYPE ROGUE WAVE BASED ON FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION [J].
Lu, Wenyue ;
Yang, Jianmin ;
Lv, Haining ;
Li, Xin .
33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 4B, 2014,
[39]   Partially nonlocal bright-dark rogue waves and bright-bright rogue wave pairs of a vector nonlinear Schrodinger equation [J].
Chen, Li ;
Zhu, Haiping .
NONLINEAR DYNAMICS, 2023, 111 (08) :7699-7711
[40]   A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrodinger equation [J].
Wang, Rui-Qi ;
Ling, Liming ;
Zeng, Delu ;
Feng, Bao-Feng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101