The Fokker-Planck equation for relaxation of a system of two dipole-dipole interacting atoms

被引:1
作者
Mikhailov, Victor A. [1 ]
Troshkin, Nikolay V. [1 ]
Trunin, Anton M. [2 ]
机构
[1] Samara State Aerosp Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
[2] JINR, BLTP, 6 Zholio Kjuri Str, Dubna 141980, Russia
来源
SARATOV FALL MEETING 2015 THIRD INTERNATIONAL SYMPOSIUM ON OPTICS AND BIOPHOTONICS; AND SEVENTH FINNISH-RUSSIAN PHOTONICS AND LASER SYMPOSIUM (PALS) | 2016年 / 9917卷
关键词
Coherent states; dipole-dipole interaction; radiation line shape; Fokker-Planck equation;
D O I
10.1117/12.2229712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The relaxation of a pair of dipole -dipole interacting two -level atoms with parallel dipole moments in a large dissipative system is studied on the basis of the generalized coherent states method. The Fokker -Planck equation and its exact solution are obtained. Explicit formulas for two-time correlation functions are given. The influence of the magnitude of the interaction on the shape of the radiation line is investigated.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Self-Consistency of the Fokker-Planck Equation [J].
Shen, Zebang ;
Wang, Zhenfu ;
Kale, Satyen ;
Ribeiro, Alejandro ;
Karbasi, Amin ;
Hassani, Hamed .
CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178 :817-841
[42]   Probability flow solution of the Fokker-Planck equation [J].
Boffi, Nicholas M. ;
Vanden-Eijnden, Eric .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03)
[43]   The Fokker-Planck equation with subcritical confinement force [J].
Kavian, Otared ;
Mischler, Stephane ;
Ndao, Mamadou .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 151 :171-211
[44]   Bilinear Optimal Control of the Fokker-Planck Equation [J].
Fleig, Arthur ;
Guglielmi, Roberto .
IFAC PAPERSONLINE, 2016, 49 (08) :254-259
[45]   The Fokker-Planck equation for arbitrary nonlinear noise [J].
Kim, S ;
Park, SH ;
Ryu, CS .
PHYSICS LETTERS A, 1997, 230 (5-6) :288-294
[46]   Solving Fokker-Planck Equation By Two-Dimensional Differential Transform [J].
Cansu, Ummugulsum ;
Ozkan, Ozan .
ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY, 2011, 1368
[47]   Solution of the Fokker-Planck Equation with a Logarithmic Potential [J].
A. Dechant ;
E. Lutz ;
E. Barkai ;
D. A. Kessler .
Journal of Statistical Physics, 2011, 145 :1524-1545
[48]   Anomalous behaviors in fractional Fokker-Planck equation [J].
Kim, K ;
Kong, YS .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) :979-982
[49]   On the higher order corrections to the Fokker-Planck equation [J].
Plyukhin, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 351 (2-4) :198-210
[50]   Computation of the solutions of the Fokker-Planck equation for one and two DOF systems [J].
Schmidt, F. ;
Lamarque, C. -H. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :529-542