On a Multifractal Pressure for Countable Markov Shifts

被引:1
|
作者
Meson, Alejandro [1 ]
Vericat, Fernando
机构
[1] UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CONICET, La Plata, Buenos Aires, Argentina
关键词
Topological pressure; Markov shift; zeta function; ZETA-FUNCTIONS; DIMENSIONS; ENTROPIES; NUMBER;
D O I
10.1080/1726037X.2019.1668150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent article [J. d' Analyse Math 131, 207, 2017], Olsen intoduced a generalized notion of multifractal pressure, and also a multifractal dynamical zeta function, which essentilly consists in considering not all configurations, but those which are "multifractally relevant". In this way more precise information about the multifractal spectrum analyzed is encoded by the multifractal pressure and the multifratcal zeta function. He applied the theory for dynamical systems modelled by finite alphabet shifts, in particular for self conformal iterated systems. Here we continue with this line considering dynamical systems given by countable Markov shifts.
引用
收藏
页码:267 / 295
页数:29
相关论文
共 21 条