OPTIMAL CONTROL IN LINEAR SOBOLEV TYPE MATHEMATICAL MODELS

被引:6
作者
Zamyshlyaeva, A. A. [1 ]
Manakova, N. A. [1 ]
Tsyplenkova, O. N. [1 ]
机构
[1] South Ural State Univ, Chelyabinsk, Russia
来源
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE | 2020年 / 13卷 / 01期
关键词
Sobolev type equations; strong solutions; optimal control; phase space; Barenblatt-Zheltov-Kochina model; model of an I-beam bulging; Boussinesq-Love model; Dzektzer model; Chen-Gurtin model; EQUATIONS; SHOWALTER; SPACE;
D O I
10.14529/mmp200101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article presents a review of the work of the Chelyabinsk mathematical school on Sobolev type equations in studying the optimal control problems for linear Sobolev type models with initial Cauchy (Showalter-Sidorov) conditions or initial-final conditions. To identify the nonemptiness of the set of feasible solutions to the control problem we use the phase space method, which has already proved itself in solving Sobolev type equations. The method reduces the singular equation to a regular one defined on some subspace of the original space and applies the theory of degenerate (semi)groups of operators to the case of relatively bounded, sectorial and radial operators. Here mathematical models are reduced to initial (initial-final) problems for an abstract Sobolev type equation. Abstract results are applied to the study of control problems for the Barenblatt-Zheltov-Kochina mathematical model, which describes fluid filtration in a fractured-porous medium, the Hoff model on a graph simulating the dynamics of I-beam bulging in a construction, and the Boussinesq- Love model describing longitudinal vibrations in a thin elastic rod, taking into account inertia and under external load, or the propagation of waves in shallow water.
引用
收藏
页码:5 / 27
页数:23
相关论文
共 42 条
[1]  
Alshin A.B., 2011, SERIES NONLINEAR ANA, V15, DOI [10.1515/ 9783110255294, DOI 10.1515/9783110255294]
[2]  
[Anonymous], 2014, Appl. Math. Sci, DOI DOI 10.12988/AMS.2014.47546
[3]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[4]  
Bayazitova AA, 2010, BULL SOUTH URAL STAT, P4
[5]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[6]  
Demidenko GV., 2003, Partial Differential Equations and Systems Not Solvable with Respectto the Highest-Order Derivative, DOI [10.1201/9780203911433, DOI 10.1201/9780203911433]
[7]  
DZEKTSER ES, 1972, DOKL AKAD NAUK SSSR+, V202, P1031
[8]  
Favini A., 2018, Electron. J. Differ. Equat, V2018, P1
[9]  
Favini A., 1998, Degenerate differential equations in Banach spaces, DOI [10.1201/9781482276022, DOI 10.1201/9781482276022]
[10]   Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of "Noises" [J].
Favini, Angelo ;
Sviridyuk, Georgy ;
Sagadeeva, Minzilia .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :4607-4621