Associators and Commutators in Alternative Algebras

被引:0
作者
Kleinfeld, E.
Shestakov, I. P. [1 ,2 ]
机构
[1] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
[2] Univ Sao Paulo, BR-05315970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
alternative algebra; associator; commutator; Kleinfeld function;
D O I
10.1007/s10469-019-09553-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that in a unital alternative algebra A of characteristic not equal 2, the associator (a, b, c) and the Kleinfeld function f(a, b, c, d) never assume the value 1 for any elements a, b, c, d is an element of A. Moreover, if A is nonassociative, then no commutator [a, b] can be equal to 1. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley-Dickson algebra over a field of characteristic 2.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 4 条
[1]   SIMPLE ALTERNATIVE RINGS [J].
KLEINFELD, E .
ANNALS OF MATHEMATICS, 1953, 58 (03) :544-547
[2]   ALGEBRAICALLY CLOSED SKEW FIELDS [J].
MAKARLIMANOV, L .
JOURNAL OF ALGEBRA, 1985, 93 (01) :117-135
[3]  
Shestakov I. P., 1976, ALGEBR LOG+, V15, P214
[4]  
Zhevlakov K. A., 1978, Rings That Are Nearly Associative in Russian