Approximating term structure of interest rates using cubic L1 splines

被引:14
|
作者
Chiu, Nan-Chieh
Fang, Shu-Cherng
Lavery, John E.
Lin, Jen-Yen
Wang, Yong [1 ]
机构
[1] SAS Inst Inc, Cary, NC 27513 USA
[2] Natl Chaiyi Univ, Chiayi City 60004, Taiwan
[3] Army Res Lab, Army Res Off, Div Math, Res Triangle Pk, NC 27709 USA
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[6] N Carolina State Univ, Raleigh, NC 27695 USA
[7] Polaris Securites, Fixed Income Div, Taipei 106, Taiwan
基金
美国国家科学基金会;
关键词
B-spline; finance; geometric programming; L-1; spline; term structure;
D O I
10.1016/j.ejor.2006.12.008
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Classical spline fitting methods for estimating the term structure of interest rates have been criticized for generating highly fluctuating fitting curves for bond price and discount function. In addition, the performance of these methods usually relies heavily on parameter tuning involving human judgement. To overcome these drawbacks, a recently developed cubic L-1 spline model is proposed for term structure analysis. Cubic L-1 splines preserve the shape of the data, exhibit no extraneous oscillation and have small fitting errors. Cubic L-1 splines are tested using a set of real financial data and compared with the widely used B-splines. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:990 / 1004
页数:15
相关论文
共 50 条
  • [1] Estimating the term structure of interest rates using penalized splines
    Tatyana Krivobokova
    Göran Kauermann
    Theofanis Archontakis
    Statistical Papers, 2006, 47 : 443 - 459
  • [2] Estimating the term structure of interest rates using penalized splines
    Krivobokova, T
    Kauermann, G
    Archontakis, T
    STATISTICAL PAPERS, 2006, 47 (03) : 443 - 459
  • [3] An Efficient Algorithm for Generating Univariate Cubic L1 Splines
    Hao Cheng
    Shu-Cherng Fang
    John E. Lavery
    Computational Optimization and Applications, 2004, 29 : 219 - 253
  • [4] An efficient algorithm for generating univariate cubic L1 splines
    Cheng, H
    Fang, SC
    Lavery, JE
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 29 (02) : 219 - 253
  • [5] Univariate cubic L1 splines -: A geometric programming approach
    Cheng, H
    Fang, SC
    Lavery, JE
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2002, 56 (02) : 197 - 229
  • [6] A geometric programming approach for bivariate cubic L1 splines
    Wang, Y
    Fang, SC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 481 - 514
  • [7] Shape-preserving properties of univariate cubic L1 splines
    Cheng, H
    Fang, SC
    Lavery, JE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (02) : 361 - 382
  • [8] A geometric programming framework for univariate cubic L1 smoothing splines
    Cheng, H
    Fang, SC
    Lavery, JE
    ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) : 229 - 248
  • [9] A Geometric Programming Framework for Univariate Cubic L1 Smoothing Splines
    Hao Cheng
    Shu-Cherng Fang
    John E. Lavery
    Annals of Operations Research, 2005, 133 : 229 - 248
  • [10] Constrained smoothing B-splines for the term structure of interest rates
    Laurini, Marcio Poletti
    Moura, Marcelo
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (02): : 339 - 350