Image registration in intensity-modulated, image-guided and stereotactic body radiation therapy

被引:23
作者
Brock, Kristy K. [1 ]
机构
[1] Univ Toronto, Princess Margaret Hosp, Univ Hlth Network, Radiat Med Program,Dept Radiat Oncol, Toronto, ON M4X 1K9, Canada
来源
IMRT, IGRT, SBRT: ADVANCES IN THE TREATMENT PLANNING AND DELIVERY OF RADIOTHERAPY | 2007年 / 40卷
关键词
D O I
10.1159/000106030
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Many recent advances in the technology of radiotherapy have greatly increased the amount of image data that must be rapidly processed. With the increasing use of multimodality imaging for target definition in treatment planning, and daily image guidance in treatment delivery, the importance of image registration emerges as key to improving the radiotherapy planning and delivery process at every step. Both clinicians and nonclinicians are affected in their work efficiency. Image registration can improve the correspondence of information in multimodality imaging, allowing more information to be obtained for tumor and normal tissue definition. Image registration at treatment delivery can improve the accuracy of therapy by taking greater advantage of images available prior to treatment. Technical advances have enhanced the accuracy and efficiency of registration through several approaches to automation, and by beginning to address the tissue deformation that occurs during the planning and therapy period. When using an automated registration technique, the user must understand the components of the registration process and the accuracy and limitations of the algorithm involved. This review presents the fundamental components of image registration, compares the benefits and limitations of different algorithms, demonstrates methods of visualizing registration results, and identifies methods to optimize registration for image-guided radiation therapy. Copyright (C) 2007 S. Karger AG, Basel.
引用
收藏
页码:94 / 115
页数:22
相关论文
共 63 条
[1]   Automated localization of the prostate at the time of treatment using implanted radiopaque markers: Technical feasibility [J].
Balter, JM ;
Lam, KL ;
Sandler, HM ;
Littles, JF ;
Bree, RL ;
TenHaken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1995, 33 (05) :1281-1286
[2]  
Barker J., 2003, International Journal of Radiation Oncology Biology Physics, V57, pS304, DOI 10.1016/S0360-3016(03)01170-2
[3]   Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging [J].
Bharatha, A ;
Hirose, M ;
Hata, N ;
Warfield, SK ;
Ferrant, M ;
Zou, KH ;
Suarez-Santana, E ;
Ruiz-Alzola, J ;
D'Amico, A ;
Cormack, RA ;
Kikinis, R ;
Jolesz, FA ;
Tempany, CMC .
MEDICAL PHYSICS, 2001, 28 (12) :2551-2560
[4]   Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue [J].
Brock, KK ;
Dawson, LA ;
Sharpe, MB ;
Moseley, DJ ;
Jaffray, DA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 64 (04) :1245-1254
[5]   Accuracy of finite element model-based multi-organ deformable image registration [J].
Brock, KK ;
Sharpe, MB ;
Dawson, LA ;
Kim, SM ;
Jaffray, DA .
MEDICAL PHYSICS, 2005, 32 (06) :1647-1659
[6]   Inclusion of organ deformation in dose calculations [J].
Brock, KK ;
McShan, DL ;
Ten Haken, RK ;
Hollister, SJ ;
Dawson, LA ;
Balter, JM .
MEDICAL PHYSICS, 2003, 30 (03) :290-295
[7]   Technical note: Creating a four-dimensional model of the liver using finite element analysis [J].
Brock, KK ;
Hollister, SJ ;
Dawson, LA ;
Balter, JM .
MEDICAL PHYSICS, 2002, 29 (07) :1403-1405
[8]   Automated generation of a four-dimensional model of the liver using warping and mutual information [J].
Brock, KM ;
Balter, JM ;
Dawson, LA ;
Kessler, ML ;
Meyer, CR .
MEDICAL PHYSICS, 2003, 30 (06) :1128-1133
[9]  
Cheng Chee-Wai, 2003, Am J Clin Oncol, V26, pe28, DOI 10.1097/00000421-200306000-00027
[10]   Volumetric transformation of brain anatomy [J].
Christensen, GE ;
Joshi, SC ;
Miller, MI .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) :864-877