Matrices A such that AA† - A†A are nonsingular

被引:21
作者
Benitez, Julio [1 ]
Rakocevic, Vladimir [2 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Dept Matemat Aplicada, Valencia 46022, Spain
[2] Univ Nis, Fac Sci & Math, Dept Math, Nish 18000, Serbia
关键词
Co-EP matrices; Moore-Penrose inverse; Idempotent; Orthogonal projectors; CS DECOMPOSITION; EP MATRICES; IDEMPOTENTS; PROJECTIONS; DIFFERENCE; SPACE; INVERTIBILITY; SUBSPACES; ANGLES; SUMS;
D O I
10.1016/j.amc.2010.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the class of square matrices A such that AA(dagger) - A(dagger)A is nonsingular, where A(dagger) stands for the Moore-Penrose inverse of A. Among several characterizations we prove that for a matrix A of order n, the difference AA(dagger) - A(dagger)A is nonsingular if and only if R(A) circle plus R(A*) = C-n,C-1, where R(.) denotes the range space. Also we study matrices A such that R(A)(perpendicular to) = R(A*). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3493 / 3503
页数:11
相关论文
共 35 条