Control of Automated Guided Vehicles Without Collision by Quantum Annealer and Digital Devices

被引:64
作者
Ohzeki, Masayuki [1 ,2 ,3 ,4 ]
Miki, Akira [5 ]
Miyama, Masamichi J. [1 ,3 ,4 ]
Terabe, Masayoshi [5 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi, Japan
[2] Tokyo Inst Technol, Inst Innovat Res, Yokohama, Kanagawa, Japan
[3] Sigma I Inc, Tokyo, Japan
[4] J Inc, Tokyo, Japan
[5] DENSO Corp, Elect R&I Div, Tokyo, Japan
来源
FRONTIERS IN COMPUTER SCIENCE | 2019年 / 1卷
关键词
quantum annealing; automated guided vehicle (AGV); optimization problem; Ising model; digital annealer; ACCELERATOR;
D O I
10.3389/fcomp.2019.00009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent advance on quantum devices realizes an artificial quantum spin system known as the D-Wave 2000Q, which implements the Ising model with tunable transverse field. In this system, we perform a specific protocol of quantum annealing to attain the ground state, the minimizer of the energy. Therefore the device is often called the quantum annealer. However the resulting spin configurations are not always in the ground state. It can rather quickly generate many spin configurations following the Gibbs-Boltzmann distribution. In the present study, we formulate an Ising model to control a large number of automated guided vehicles in a factory without collision. We deal with an actual factory in Japan, in which vehicles run, and assess efficiency of our formulation. Compared to the conventional powerful techniques performed in digital computer, still the quantum annealer does not show outstanding advantage in the practical problem. Our study demonstrates a possibility of the quantum annealer to contribute solving industrial problems.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Searching for quantum speedup in quasistatic quantum annealers [J].
Amin, Mohammad H. .
PHYSICAL REVIEW A, 2015, 92 (05)
[2]  
[Anonymous], 2018, GUROBI OPTIMIZER REF
[3]   Dynamics of order parameters of nonstoquastic Hamiltonians in the adaptive quantum Monte Carlo method [J].
Arai, Shunta ;
Ohzeki, Masayuki ;
Tanaka, Kazuyuki .
PHYSICAL REVIEW E, 2019, 99 (03)
[4]   Deep Neural Network Detects Quantum Phase Transition [J].
Arai, Shunta ;
Ohzeki, Masayuki ;
Tanaka, Kazuyuki .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (03)
[5]   Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer [J].
Aramon, Maliheh ;
Rosenberg, Gili ;
Valiante, Elisabetta ;
Miyazawa, Toshiyuki ;
Tamura, Hirotaka ;
Katzgraber, Helmut G. .
FRONTIERS IN PHYSICS, 2019, 7 (APR)
[6]   A scalable readout system for a superconducting adiabatic quantum optimization system [J].
Berkley, A. J. ;
Johnson, M. W. ;
Bunyk, P. ;
Harris, R. ;
Johansson, J. ;
Lanting, T. ;
Ladizinsky, E. ;
Tolkacheva, E. ;
Amin, M. H. S. ;
Rose, G. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (10)
[7]   Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor [J].
Bunyk, Paul I. ;
Hoskinson, Emile M. ;
Johnson, Mark W. ;
Tolkacheva, Elena ;
Altomare, Fabio ;
Berkley, Andrew J. ;
Harris, Richard ;
Hilton, Jeremy P. ;
Lanting, Trevor ;
Przybysz, Anthony J. ;
Whittaker, Jed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)
[8]  
Crawford D., 2016, REINFORCEMENT LEARNI
[9]  
Fazlollahtabar H., 2016, AUTONOMOUS GUIDED VE, V1st Edn
[10]   Mathematical optimization for earliness/tardiness minimization in a multiple automated guided vehicle manufacturing system via integrated heuristic algorithms [J].
Fazlollahtabar, Hamed ;
Saidi-Mehrabad, Mohammad ;
Balakrishnan, Jaydeep .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 72 :131-138