Recently, Katsevich proved a filtered backprojection formula for exact image reconstruction from cone-beam data along a helical scanning locus, which is an important breakthrough since 1991 when the spiral cone-beam scanning mode was proposed. In this paper, we prove a generalized Katsevich's formula for exact image reconstruction from cone-beam data collected along a rather flexible curve. We will also give a general condition on filtering directions. Based on this condition, we suggest a natural choice of filtering directions, which is more convenient than Katsevich's choice and can be applied to general scanning curves. In the derivation, we use analytical techniques instead of geometric arguments. As a result, we do not need the uniqueness of the PI lines. In fact, our formula can be used to reconstruct images on any chord as long as a scanning curve runs from one endpoint of the chord to the other endpoint. This can be considered as a generalization of Orlov's classical theorem. Specifically, our formula can be applied to (i) nonstandard spirals of variable radii and pitches (with PI- or n-PI-windows), and (ii) saddlelike curves. (C) 2005 American Association of Physicists in Medicine.